电气技术  2021, Vol. 22 Issue (10): 71-75    DOI:
电气设备检修与故障诊断 |
基于振动信号的锂离子电池故障诊断方法
尹来宾1, 许洪华1, 彭晓晗2, 夏伟栋1, 马宏忠2
1.江苏省电力公司南京供电公司,南京 210019;
2.河海大学能源与电气学院,南京 211100
Fault diagnosis method of lithium-ion battery based on vibration signal
YIN Laibin1, XU Honghua1, PENG Xiaohan2, XIA Weidong1, MA Hongzhong2
1. Jiangsu Nanjing Power Supply Company, Nanjing 210019;
2. College of Energy and Electrical Engineering, Hohai University, Nanjing 211100
全文: PDF (922 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为实现对锂离子电池过充及外部短路故障的诊断,提出一种基于改进变分模态分解(VMD)-多尺度熵(MSE)的锂离子电池振动信号特征提取方法。通过改进VMD对振动信号进行分解,对所得固有模态分量求多尺度熵值,提取锂离子电池在不同工况下的振动特征,最后基于此特征进行K均值聚类,完成对过充和外部短路故障的故障识别。经对比实验验证,该方法能有效提取锂离子电池振动信号特征量,正确识别锂离子电池的过充及外部短路故障,且准确率更优。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹来宾
许洪华
彭晓晗
夏伟栋
马宏忠
关键词 锂离子电池故障诊断振动信号特征提取过充故障外部短路故障    
Abstract:In order to realize the fault diagnosis of overcharge and external short circuit of lithium-ion battery, a feature extraction method of lithium-ion battery vibration signal based on improved variable mode decomposition (VMD)-multiscale entropy (MSE) is proposed. Through the improved VMD decomposition of vibration signal, the multiscale entropy value of the natural mode component is obtained, and the vibration characteristics of lithium-ion battery under different working conditions are extracted. Finally, based on this feature, K-means clustering is carried out to complete the fault identification of overcharge and external short circuit fault. The experimental results show that this method can effectively extract the vibration signal features of lithium-ion battery, and correctly identify the overcharge and external short circuit faults of lithium-ion battery, and the accuracy is better.
Key wordslithium-ion battery    fault diagnosis    vibration signal    feature extraction    overcharge fault    external short circuit fault   
收稿日期: 2021-03-15     
基金资助:国网江苏省电力有限公司科技项目(J2020015); 111引智计划(B14022)
作者简介: 尹来宾(1987—),男,安徽淮北人,硕士,工程师,研究发向为电力设备运行管理等。
引用本文:   
尹来宾, 许洪华, 彭晓晗, 夏伟栋, 马宏忠. 基于振动信号的锂离子电池故障诊断方法[J]. 电气技术, 2021, 22(10): 71-75. YIN Laibin, XU Honghua, PENG Xiaohan, XIA Weidong, MA Hongzhong. Fault diagnosis method of lithium-ion battery based on vibration signal. Electrical Engineering, 2021, 22(10): 71-75.
链接本文:  
https://dqjs.cesmedia.cn/CN/Y2021/V22/I10/71