Research on current limiting characteristics of superconducting fault-current limiting cable made from 2G high temperature superconducting tapes
MA Siming1, WANG Yinshun1, ZHANG Guangyi1, KANG Qiangqiang1, ZHU Chengzhi2
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Beijing 102206; 2. State Grid Zhejiang Electric Power Co., Ltd, Hangzhou 310007;
Abstract:This paper presents a high temperature superconducting (HTS) fault current-limiting cable (SFCLC) based on the structure and characteristics of the second-generation (2G) HTS tapes. The cable uses a kind of stainless steel reinforced 2G tapes and the former is strand consisting of stainless-steel wires. The current limiting characteristics of this cable are realized through the use of the characteristics of 2G tapes with very low resistance at superconducting and high resistance at normal states. After quench resistance and current limiting characteristics of stainless-steel tapes being measured and analyzed, the main geometrical parameters of the SFCLC are designed and sample SFCLC is prepared. Fault current limiting tests and numerical simulation of the sample cable are performed to obtain the current limiting and quench recovery characteristics in the case of a short-circuit fault current exists, respectively. The results show that the cable can effectively reduce the fault current, which means it can realize the dual functions of electric energy transmission and current limitation during faults in practical engineering applications.
马思明, 王银顺, 张广毅, 康强强, 朱承治. 基于第二代高温超导带材的超导限流电缆限流特性研究[J]. 电气技术, 2022, 23(1): 1-7.
MA Siming, WANG Yinshun, ZHANG Guangyi, KANG Qiangqiang, ZHU Chengzhi. Research on current limiting characteristics of superconducting fault-current limiting cable made from 2G high temperature superconducting tapes. Electrical Engineering, 2022, 23(1): 1-7.
[1] 夏立萌, 王银顺, 赵伟杰, 等. 35kV/1.0kA冷绝缘高温超导电缆温度分布[J]. 低温与超导, 2013, 41(11): 58-62. [2] YUMURA H, ASHIBE Y, ITOH H, et al.Phase II of the Albany HTS cable project[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1698-1701. [3] MUKOYAMA S, MARUYAMA S, YAGI M, et al. Demonstration and verification tests of a 500m HTS cable in the super-ACE project[J]. Physica C Super- conductivity & Its Applications, 2005, 426-431: 1365-1373. [4] LIM J H, SOHN S H, YANG H S, et al.Results of KEPCO HTS cable system tests and design of hybrid cryogenic system[J]. Physica C, 2010, 470(20): 1597-1600. [5] GESCHIERE A, WILLEN D, PIGA E, et al.HTS cables open the window for large-scale renewables[J]. Journal of Physics: Conference Series, 2008, 97: 012183. [6] XIN Ying, HOU Bo, BI Yanfang, et al.Introduction of China’s first live grid installed HTS power cable system[J]. IEEE Transactions on Applied Super- conductivity, 2005, 15(2): 1814-1817. [7] 戴少涛, 林良真, 林玉宝, 等. 75m三相交流高温超导电缆的研制[J]. 中国电机工程学报, 2007, 27(12): 91-96. [8] XIAO Liye, DAI Shaotao, LIN Liangzhen, et al.Development of a 10kA HTS DC power cable[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 5800404. [9] DAI Shaotao, LIN Liangzhen, LIN Yubao, et al.The three-phase 75m long HTS power cable[J]. Cryogenics, 2007, 47(7-8): 402-405. [10] 魏东, 宗曦华, 徐操, 等. 35kV 2000A低温绝缘高温超导电力电缆示范工程[J]. 电线电缆, 2015, 1(1): 1-3, 5. [11] WEBER C S, LEE R, RINGO S, et al.Testing and demonstration results of the 350m long HTS cable system installed in Albany, NY[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2038-2042. [12] 金建勋, 游虎, 姜在强, 等. 高温超导电缆发展及其应用概述[J]. 南方电网技术, 2015, 9(12): 17-28. [13] 高海龙, 卿俊杰. 高压直流电力线路分布参数计算分析[J]. 电气技术, 2019, 20(9): 69-72. [14] YASUDA K, ICHINOSE A, KIMURA A, et al.Research and development of superconducting fault current limiter in Japan[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 1978-1981. [15] LEE S, KANG H, BAE D K, et al.Development of 6.6kV-200A DC reactor type superconducting fault current limiter[J]. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 867-870. [16] HONG Z, SHENG J, ZHANG J, et al.The develop- ment and performance test of a 10kV resistive type superconducting fault current limiter[J]. IEEE Transa- ctions on Applied Superconductivity, 2012, 22(3): 5600504. [17] 于兵. 新型磁通约束型超导限流器样机研制与实验[D]. 武汉: 华中科技大学, 2016. [18] 谭翔宇, 任丽, 唐跃进, 等. 饱和铁心型超导限流器在柔直系统中的限流特性研究[J]. 电工技术学报, 2020, 35(增刊2): 556-561. [19] STEMMLE M, MERSCHEL F, NOE M, et al.AmpaCity-Installation of advanced superconducting 10kV system in city center replaces conventional 110kV cables[C]//2013 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Beijing, China, 2013: 323-326. [20] MELNIK I, GESCHIERE A, WILLEN D, et al.Long length HTS cable with integrated FCL property[J]. Journal of Physics: Conference Series, 2010, 234(3): 032037. [21] MAGUIRE J, FOLTS D, YUAN J, et al.Development and demonstration of a fault current limiting HTS cable to be installed in the Con Edison Grid[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1740-1743. [22] MAGUIRE J, FOLTS D, YUAN J, et al.将安装于CON EDISON电网的带故障限流功能的高温超导电缆现状和进展[J]. 电网与清洁能源, 2011, 27(5): 7-10. [23] NGUYEN T T, LEE W G, LEE S J, et al.A simplified model of voaxial, multilayer high-temperature super- conducting power cables with Cu formers for transient studies[J]. Energies, 2019, 12(8): 1514. [24] DE SOUSA W T B, KOTTONAU D, BOCK J, et al. Investigation of a concentric three-phase HTS cable connected to an SFCL device[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(4): 5400105. [25] DE SOUSA W T B, KOTTONAU D, NOE M. Transient simulation and recovery time of a three- phase concentric HTS-cable[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 5401705. [26] 蒋意珏, 唐毓, 罗维. 高温超导磁储能励磁线圈优化设计[J]. 电气技术, 2019, 20(5): 41-45. [27] NAKAMURA F, IWAKUMA M, MIURA S, et al.Numerical analysis of current-limiting cooperation of a 20MVA superconducting transformer and cable[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 5502105. [28] WEISS J D, KIM C, PAMIDI S, et al.Hybrid superconducting fault current limiting CORC wires with millisecond response time[J]. Superconductor Science and Technology, 2019, 32(3): 034005. [29] 祝乘风, 厉彦忠, 谭宏博, 等. 热扰动冲击下的高温超导电缆失超恢复特性[J]. 电工技术学报, 2021, 36(18): 3884-3890. [30] 王银顺. 超导电力技术基础[M]. 北京: 科学出版社, 2011. [31] KASCHNITZ E, KASCHNITZ H, SCHLEUTKER T, et al.Electrical resistivity measured by millisecond pulse-heating in comparison to thermal conductivity of the stainless steel AISI 316L at elevated tempera- ture[J]. High Temperatures-High Pressures, 2017, 46(4-5): 353-365. [32] VALENCIA J J, QUESTED P N.Thermophysical Properties[DB]. ASM手册, 2008, 15: 468-481. [33] EKIN J W.Experimental techniques for low- temperature measurements: cryostat design, material properties and superconductor critical-current testing[J]. Physics Today, 2007, 60(5): 67-68. [34] DAVIS J W, SMITH P D.ITER material properties handbook[J]. Journal of Nuclear Materials, 1996(233-237): 1593-1596. [35] 洪剑平. 液氮浴中沸腾换热系数的反传热求解与验证[D]. 杭州: 浙江大学, 2008.