|
|
Realization of Two-Dimensional PIC/MCC Model based on Matlab |
Wang Junjie1, Zheng Jinhua1, 2, Wei Xinxu1, Wu Shuang1, Xu Lu1 |
1. Engineering Research Center of Energy-saving Technology & Equipment of Thermal Energy System,Ministry of Education, School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001; 2. Zhengzhou Reborn Petroleum Machinery Co., Ltd, Zhengzhou 450001 |
|
|
Abstract In order to achieve the two-dimensional simulation of gas discharge under limited conditions, a simulation program based on Matlab has been developed in the paper, and utilized to verify the discharge process of argon under direct current and low pressure. Electronic speed was initialized through Maxwell equations and the results were verified. The occurrence of electron avalanche in the process of argon discharge was verified by extracting the change trend of the number of electrons in the 50 time steps, and the production of anode sheath was observed through the distribution of electron position at the end of the 100 time step. According to the solution of Poisson’s equation to the 200 step and 300 step, the solution of Poisson's equation in the 200 step was sufficient under the simulated conditions in this paper. The diagram of temperature distribution given by the root mean square treatments of the electron velocity successfully verified the experimental phenomena that the temperature near the anode plate was higher in the DC argon discharge. Thus, the two-dimensional PIC/MCC program based on Matlab can satisfactorily simulate the gas discharge.
|
Published: 21 March 2017
|
|
|
|
Cite this article: |
Wang Junjie,Zheng Jinhua,Wei Xinxu等. Realization of Two-Dimensional PIC/MCC Model based on Matlab[J]. Electrical Engineering, 2017, 18(3): 84-88.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2017/V18/I3/84
|
[1] Birdsall C K. Particle-in-Cell Charged-Particle simu- lations, plus Monte Carlo collision with neutral atoms, PIC-MCC[J]. IEEE Trans.Plasma Sci, 1991, 19(2): 65-85. [2] Nanbu K. Probability theory of electron-molecule, ion-molecule, molecule-molecule, and coulomb colli- sions for particle modeling of materials processing plasma and gases[J]. IEEE Trans. on Plasma Science, 2000, 28(3): 971-989. [3] 汪沨, 肖晓林, 张宪标, 等. 基于PIC法SF 6 /N 2 混合气体中绝缘子沿面放电特性研究[J]. 电工技术学报, 2011, 26(8): 220-226. [4] 吴变桃, 肖登明. 用改进的蒙特卡罗法模拟SF 6 和CO 2 混合气体电子崩参数[J]. 电工技术学报, 2007, 22(1): 13-16. [5] 李静, 曹云东, 王尔智, 等. 断路器短间隙气体击穿过程的粒子模拟[J]. 中国电机工程学报, 2010(16): 125-130. [6] 汪沨, 李锰, 潘雄峰, 等. 基于FEM-FCT算法的SF 6 /N 2 混合气体中棒-板间隙电晕放电特性的仿真研究[J]. 电工技术学报, 2013, 28(9): 261-267. [7] 冯明, 张鉴, 黄庆安. ICP刻蚀中等离子体分布的模拟[J]. 电子器件, 2006, 28(3): 529-531. [8] 张志涌. MATLAB教程[M]. 5版. 北京: 北京航空航天大学出版社, 2003. [9] 李静, 曹云东, 邹积岩, 等. 直流气体放电过程中的离子分子碰撞模型[J]. 高电压技术, 2009(7): 1677- 1682. [10] 邵福球. 等离子体离子模拟[M]. 北京: 科学出版社, 2002. [11] 刘沛华, 鲁华祥, 龚国良, 等. 基于FPGA的高速任意分布伪随机数发生器[J]. 应用科学学报, 2012, 30(3): 306-310. [12] Nanbu K. Particle modeling of nonequilibrium plasmas and gases for materials processing[J]. Vacuum Science Technology, 2004(5): 1-57. [13] Birdsall C K. Plasma physics via computer simu- lation[M]. New York: McGraw-Hill, 1985. |
|
|
|