|
|
Development and application of generator excitation online monitoring system |
SU Rongqiang, SHI Zhiliang, ZHANG Gaofeng, CHEN Feng, ZHANG Haitian |
NR Electric Co.,Ltd, Nanjing 211102 |
|
|
Abstract The active support technology primarily based on distributed new energy is still in the developing stage, and the inertia support capacity of conventional generators still plays an important role. The excitation system, as the generator’s control core, directly affects the reliability of power supply. In this study, a generator excitation online monitoring system (GEOMS) is developed in view of the fact that there is limited monitoring capability in generator excitation. Firstly, hardware and software architecture of GEOMS are introduced, and the excitation monitoring model is designed according to four mainstream communication protocols. Secondly, the distributed front-end acquisition architecture that adapts to various communication protocols are proposed and a mathematical model for load balancing of acquisition channels is constructed to realize distributed acquisition and centralized monitoring of excitation signals. Finally, some basic functions, such as dynamic monitoring of excitation measurements and early warning of generator operating status, are developed. The developed system has been successfully applied in a 660MW unit.
|
Received: 29 April 2024
|
|
|
|
Cite this article: |
SU Rongqiang,SHI Zhiliang,ZHANG Gaofeng等. Development and application of generator excitation online monitoring system[J]. Electrical Engineering, 2024, 25(11): 70-75.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2024/V25/I11/70
|
[1] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904. [2] 文云峰, 杨伟峰, 汪荣华, 等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报, 2020, 40(6): 1843-1856. [3] 白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14): 3699-3705. [4] 石文辉, 屈姬贤, 罗魁, 等. 高比例新能源并网与运行发展研究[J]. 中国工程科学, 2022, 24(6): 52-63. [5] 张怡静, 李智, 时艳强, 等. 基于储能惯量支撑的受端电网频率优化控制方法[J]. 电工技术学报, 2024, 39(11): 3556-3568. [6] 郝艺, 周瑀涵, 刘晨曦, 等. 含跟网型储能的新能源多馈入系统小扰动电压支撑强度分析[J]. 电工技术学报, 2024, 39(11): 3569-3580. [7] 张建军, 岳啸鸣, 赵克斌, 等. 一起330MW汽轮发电机转子绕组短路故障分析及处理[J]. 电气技术, 2023, 24(3): 69-72. [8] 纪虎军, 赵俊杰, 李强. 一起燃机励磁电压异常原因分析及预防建议[J]. 电气技术, 2022, 23(7): 101-103, 108. [9] 孙万童. 基于多源信息融合的大型发电机碳刷在线监测与故障诊断研究[D]. 重庆: 重庆理工大学, 2020. [10] 唐晓莉, 林庆农, 陆鑫, 等. 基于通用模型的电力图形软件开发平台[J]. 电力自动化设备, 2010, 30(6): 131-135. [11] 电力系统实时动态监测系统第2部分: 数据传输协议: GB/T 26865.2—2011[S]. 北京: 中国标准出版社, 2011. [12] 继电保护IEC 61850工程应用模型: GB/T 32890—2016[S]. 北京: 中国标准出版社, 2017. [13] 变电站继电保护信息以太网103传输规范: DL/T 1639—2016[S]. 北京: 中国电力出版社, 2016. [14] 基于Modbus协议的工业自动化网络规范第1部分: Modbus应用协议: GB/T 19582.1—2008[S]. 北京: 中国标准出版社, 2008. [15] 崔昌栋, 陆鑫, 钱锋, 等. SophicDB: 一个高性能分布式实时数据库系统[J]. 计算机应用与软件, 2016, 33(10): 46-51. [16] 曹阳, 姚建国, 杨胜春, 等. 智能电网核心标准IEC 61970最新进展[J]. 电力系统自动化, 2011, 35(17): 1-4. [17] 叶飞, 金鑫, 朴林, 等. 基于电力调度数据网双平面的主站控制多机多链路采集方案[J]. 电力系统自动化, 2015, 39(8): 155-158. [18] 高倩, 杨知方, 李文沅. 电力系统混合整数线性规划问题的运筹决策关键技术综述与展望[J]. 电工技术学报, 2024, 39(11): 3291-3307. [19] 陈思言, 吴高强, 朱朝领, 等. 发电机励磁限制与发电机保护的配合关系研究[J]. 人民长江, 2022, 53(增刊1): 153-155, 159. |
|
|
|