|
|
The 96 point daily load forecasting method for power system considering the cumulative effect of meteorological factors |
Li Hanju |
Dongguan Power Supply Bureau, Guangdong Power Grid Co., Ltd, Dongguan, Guangdong 523008 |
|
|
Abstract In order to improve the prediction accuracy, according to the characteristics of daily load curve of electric power system and the sensitivity of different period load to meteorological factors, the daily load of 96 points is divided into four periods, respectively. Based on the day before the forecasting day, the multivariate linear regression modelsare set up by taking the average load change at each period as the output variable and taking daily type, month, maximum temperature change and minimum temperature change of the forecasting day and maximum temperature change, minimum temperature changeof the day before the forecasting day as input variables. The model can calculate the ratio of the average load of the forecasting day to the average load of the previous day. The correlation analysis shows that the load curve of adjacent days has a high linear correlation, so the load of forecast day can be calculated based on the previous day's load data. Taking the load in Dongguan area as an example, the results show that the method has higher stability and accuracy, and is better than the traditional method.
|
Received: 18 October 2017
Published: 18 April 2018
|
|
|
|
Cite this article: |
Li Hanju. The 96 point daily load forecasting method for power system considering the cumulative effect of meteorological factors[J]. Electrical Engineering, 2018, 19(4): 28-32.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2018/V19/I4/28
|
[1] 谢宏, 陈志业, 牛东晓, 等. 基于小波分解与气象因素影响的电力系统日负荷预测模型研究[J]. 中国电机工程学报, 2001, 21(5): 5-10. [2] 陈亚, 李萍. 基于神经网络的短期电力负荷预测仿真研究[J]. 电气技术, 2017, 18(1): 26-29. [3] 高赐威, 李倩玉, 苏卫华, 等. 短期负荷预测中考虑积温效应的温度修正模型研究[J]. 电工技术学报, 2015, 30(4): 242-248. [4] 陈刚, 周杰, 张雪君, 等. 基于BP与RBF级联神经网络的日负荷预测[J]. 电网技术, 2009, 33(12): 101-105. [5] 张颖, 张瑞, 高中文. 基于相似日的神经网络短期负荷预测方法[J]. 黑龙江大学自然科学学报, 2003, 20(2): 59-61, 65. [6] 黎祚, 周步祥, 林楠. 基于模糊聚类与改进BP算法的日负荷特性曲线分类与短期负荷预测[J]. 电力系统保护与控制, 2012, 40(3): 56-60. [7] 李滨, 覃芳璐, 吴茵, 等. 基于模糊信息粒化与多策略灵敏度的短期日负荷曲线预测[J]. 电工技术学报, 2017, 32(9): 149-159. [8] 陈根永, 史敬天, 毛晓波, 等. 考虑温度积累效应的短期电力负荷预测方法研究[J]. 电力系统保护与控制, 2009, 37(16): 24-28. [9] 程卓. 引入负荷温度梯度的负荷预测方法研究[J]. 电气技术, 2015, 16(10): 13-16, 44. [10] 蔡佳宏, 刘俊勇. 超短期负荷预测中相似日的选择方法[J]. 华北电力大学学报, 2006, 33(1): 38-41. [11] Han-Ju Li.A data forward stepwise fitting algorithm based on orthogonal function system[J]. ITM web of conferences 12, 04013(2017). |
|
|
|