|
|
Multiple lightning waveform parameter evaluation method for overvoltage analysis of ultra-high voltage alternating current transmission lines |
WANG Zhengxi1,2, LIANG Tao1,2, GUO Tongwei1,2, ZENG Hong3, CUI Tao3 |
1. State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049; 2. School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049; 3. State Grid Sichuan Electric Power Research Institute, Chengdu 610041 |
|
|
Abstract Ultra-high voltage AC power system usually uses standard lightning current parameters to calculate external overvoltage, and lightning observation data show that more than 80% of the lightning process is multiple lightning strikes, which is significantly different from the standard recommended waveform. Under the background of frequent multiple lightning accidents in ultra-high voltage AC system, it is urgent to put forward a rigorous and scientific evaluation method of multiple lightning parameters. Therefore, this paper takes a 500kV AC ultra-high voltage transmission system as the object, and proposes a multiple lightning current waveform parameter evaluation method considering the transient characteristics of the line from the extreme lightning conditions and the actual fault recording. The analysis shows that the fault recording inversion method can characterize the real multiple lightning strikes. Extreme multiple lightning strikes method analyzes the lightning current parameters under harsh conditions from the lightning resistance level of the cable. The waveform parameter evaluation method proposed in this paper provides a technical scheme for overvoltage analysis of ultr-high voltage transmission system in lightning-prone areas.
|
Received: 02 August 2024
|
|
|
|
Cite this article: |
WANG Zhengxi,LIANG Tao,GUO Tongwei等. Multiple lightning waveform parameter evaluation method for overvoltage analysis of ultra-high voltage alternating current transmission lines[J]. Electrical Engineering, 2025, 26(1): 14-22.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I1/14
|
[1] 丁怡婷. 截至去年底我国220千伏及以上输电线路长约92万公里较2013年增长约七成[N]. 人民日报, 2024-07-17(2). [2] 胡毅. 输电线路运行故障的分析与防治[J]. 高电压技术, 2007, 33(3): 1-8. [3] 秦锋, 王旭桐, 陈伟, 等. 强电磁脉冲下线路绝缘子闪络特性试验研究[J]. 电工技术学报, 2023, 38(13): 3640-3650. [4] 王婷婷. 超/特高压输电线路雷电屏蔽性能方法研究[D]. 重庆: 重庆大学, 2013. [5] 杜勇, 黄良灿, 金哲, 等. 基于EGM模型的输电通道雷电绕击风险数字化评估现状与展望[J]. 高电压技术, 2022, 48(10): 3900-3909. [6] RAKOV V A, BORGHETTI A, BOUQUEGNEAU C, et al.CIGRE technical brochure on lightning para- meters for engineering applications[C]//2013 Inter- national Symposium on Lightning Protection(Ⅻ SIPDA), Belo Horizonte, Brazil, 2013. [7] AREVALO L, COORAY V.‘The mesh method’ in lightning protection standards-revisited[J]. Journal of Electrostatics, 2010, 68(4): 311-314. [8] HAGENGUTH J H, ANDERSON J G.Lightning to the empire state building-part Ⅲ [includes discussion][J]. Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 1952, 71(3): 641-649. [9] MCCANN G D.The measurement of lightning currents in direct strokes[J]. Transactions of the American Institute of Electrical Engineers, 1944, 63(12): 1157-1164. [10] DIENDORFER G, PICHLER H, MAIR M.Some parameters of negative upward-initiated lightning to the gaisberg tower (2000—2007)[J]. IEEE Transa- ctions on Electromagnetic Compatibility, 2009, 51(3): 443-452. [11] TAKAMI J, OKABE S.Observational results of lightning current on transmission towers[J]. IEEE Transactions on Power Delivery, 2007, 22(1): 547-556. [12] 周文俊, 汪涛, 喻剑辉. 架空输电线路雷电流波形实时监测系统[C]//08全国电工测试技术学术交流会, 中国, 杭州, 2008. [13] 张达天. 多通道雷电流测量装置的研制[D]. 北京: 华北电力大学, 2010. [14] 孙萍, 郑庆均, 吴璞三, 等. 220kV新杭线Ⅰ回路27年雷电流幅值实测结果的技术分析[J]. 中国电力, 2006, 39(7): 74-76. [15] 李志军, 尹宜宜, 戴敏, 等. 特高压交流输电线路雷电流监测[J]. 高电压技术, 2012, 38(12): 3338-3346. [16] IEEE recommended practice on characterization of surges in low-voltage (1000V and less) AC power circuits: IEEE C62.41.2—2002[S]. [17] 蔡力, 田汭鑫, 魏俊涛, 等. 连续冲击电流脉冲下避雷器阀片电气性能研究[J]. 电工技术学报, 2023, 38(增刊1): 168-176. [18] 郭巍, 汪德军, 赵江, 等. 镇宁地区110kV架空线路雷击跳闸分析及防雷策略研究[J]. 电气技术, 2024, 25(7) :56-61. [19] 施围, 邱毓昌, 张乔根. 高电压工程基础[M]. 北京: 机械工业出版社, 2006. [20] 袁涛, 王肖田, 司马文霞, 等. 山区输电线路雷击跳闸预警的融合算法研究[J]. 电工技术学报, 2023, 38(9): 2528-2540. [21] 李林, 王永平, 黄志岭, 等. 三峡-常州±500kV直流输电工程控制保护系统改造[J]. 电气技术, 2022, 23(12): 38-43, 51. |
|
|
|