|
|
Thermal design of high-power inverter |
Zhao Honglu1, Zhu Yongyuan2, Zhang Yin1 |
1. School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221000; 2. Zhangjiagang City Power Supple Company of the State Grid Electric Power Co., Ltd, Zhangjiagang, Jiangsu 215600 |
|
|
Abstract This paper focuses on the thermal design of High-power inverter. IGBT modules have been widely used in power systems, as well as in reactive power compensation systems. With the trend of smaller size and lighter weight of the system, the heat dissipation within unit volume is consequently becoming higher, endangering the operation of the system. This paper provides a full set of thermal design: first, the loss of IGBT module in real working condition is analyzed; Then, a new type of thermal impedance network of NTC thermistor is put forward, with the help of the circuit, the junction temperature and thermal resistance could be calculated more quickly and accurately; finally, we use the DesignXplorer module of ANSYS to analyze the key parameters that influence the thermal resistance quantitatively. The cooling effect of the cooling system has been simulated and experimented to prove the accuracy of the thermal design.
|
Received: 25 January 2018
Published: 31 August 2018
|
|
|
|
[1] Mudawar I, Bharathan D, Kelly K, et al.Use of graphene-based film for efficient cooling of electronics[J]. Science Foundation in China, 2015, 32(4): 18. [2] Liu Chunkai, Chao Yunlin, Yang Shujung, et al. Direct liquid cooling for IGBT power module[C]// International Microsystems, Packaging. Assembly and Circuits Technology Conference, 2014 9th. [3] Peng, Lei, Liu, et al. Sequential RBF surrogate-based efficient optimization method for engineering design problems with expensive Black-Box functions[J]. Chinese Journal of Mechanical Engineering, 2014, 4(6): 1099-1111. [4] Diekerhoff S, Bernet S, Krug D.New perturb- ation technique for transient analysis and its applications in DC-DC pwm switching power converters[J]. Journal of Electronics(China), 1997, 20(4): 357-366. [5] 陈权, 王群京, 姜卫东, 等. 二极管钳位型三电平变换器开关损耗分析[J]. 电工技术学报, 2008, 23(2): 68-75. [6] Hui Li, Liao Xinglin, Zheng Zeng, et al.Wind-induced response analysis of a wind turbine Tower including the blade-tower coupling effect[J]. IEEE Transactions on Energy Conversion, 2009, 32(11): 1573-1580. [7] Amir S B, Ke Ma, Pramod G, et al.A spatially weighted degree model for network vulnerability analysis[J]. Geo-Spatial Information Science, 2011, 4(4): 274-281. [8] Chen Yiyi, Yan Yuying, Li Bo, et al. Thermal characterization analysis of IGBT power module integrated with a vapour chamber and pin-fin heat sink[C]//PCIM Europe2017, 16-18 May 2017, Nuremberg, Germany. [9] Liu Jian, Quan Quanbao.Optimization design of the stratospheric airship's power system based on the methodology of orthogonal experiment[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2013, 16(1): 38-46. [10] 刘建设, 申涛. 电子元器件散热器的设计与研究[J]. 机电信息, 2010, 15(24): 125-126. [11] 毛志云, 王艳, 姚志国, 等. 基于ICEPAK的SVG功率柜散热系统分析[J]. 电气技术, 2016, 17(1): 72-75, 86. [12] 杨旭, 马静, 张新武, 等. 电力电子装置强制风冷散热方式的研究[J]. 电力电子技术, 2000(4): 36-38. [13] 王群京, 陈权, 姜卫东, 等. 中点钳位型三电平逆变器通态损耗分析[J]. 电工技术学报, 2007, 22(3): 66-71, 90. [14] 景巍. 大功率三电平变频器功率器件损耗研究[D]. 中国矿业大学, 2011. [15] 徐世周. 大功率三电平逆变器热稳定性分析与控制关键技术研究[D]. 中国矿业大学, 2016. [16] 陈权, 王群京, 姜卫东, 等. 二极管钳位型三电平变换器开关损耗分析[J]. 电工技术学报, 2008, 23(2): 68-75. [17] 景巍, 谭国俊, 叶宗彬. 大功率三电平变频器损耗计算及散热分析[J]. 电工技术学报, 2011, 26(2): 134-140. [18] 白保东, 陈德志, 王鑫博. 逆变器IGBT损耗计算及冷却装置设计[J]. 电工技术学报, 2013, 28(8): 97-106. [19] 胡建辉, 李锦庚, 邹继斌, 等. 变频器中的IGBT模块损耗计算及散热系统设计[J]. 电工技术学报, 2009, 24(3): 159-163. [20] 张健. 电力电子器件及其装置的散热结构优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
|
|
|