|
|
Short-term load forecasting based on improved fish-swarm algorithm and least squares support vector machine |
Song Xuewei1, Liu Tianyu1, Jiang Xiuchen2, Sheng Gehao2, Liu Yuyao3 |
1. Department of Electrical Engineering, Shanghai Dian Ji University, Shanghai 201306; 2. Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240; 3. State Grid Shandong Province Kenli District Power Supply Company, Dongying, Shandong 257000 |
|
|
Abstract In the power system, accurate load data is required for both the normal operation and the islanding of the fault repair. Therefore, accurate short-term forecasting of the power load is very important. In this paper, the least squares support vector machine (LS-SVM) is used for prediction. Firstly, the artificial fish-swarm algorithm (AFSA) is improved by the visual field and step size adaptive setting and the introduction of elite reverse learning mechanism, which makes the calculation more advantageous. After that, the improved artificial fish-swarm algorithm (IAFSA) is used to improve the LS-SVM widely used in load forecasting, mainly for its kernel width coefficient and regularization parameters. Finally, the modified LS-SVM is used to the IEEE33 node system. Short-term load forecasting is performed, and the illustration shows the engineering utility of the method.
|
Received: 29 April 2019
Published: 19 November 2019
|
|
|
|
Cite this article: |
Song Xuewei,Liu Tianyu,Jiang Xiuchen等. Short-term load forecasting based on improved fish-swarm algorithm and least squares support vector machine[J]. Electrical Engineering, 2019, 20(11): 20-26.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2019/V20/I11/20
|
[1] 康重庆, 夏清, 张伯明. 电力系统负荷预测研究综述与发展方向的探讨[J]. 电力系统自动化, 2004, 28(17): 1-11. [2] 吴润泽, 包正睿, 王文韬, 等. Hadoop架构下基于模式匹配的短期电力负荷预测方法[J]. 电工技术学报, 2018, 33(7): 1542-1551. [3] 李滨, 覃芳璐, 吴茵, 等. 基于模糊信息粒化与多策略灵敏度的短期日负荷曲线预测[J]. 电工技术学报, 2017, 32(9): 149-159. [4] 郭国太. 电动汽车充电站负荷计算及影响因素[J]. 电气技术, 2019, 20(3): 93-97. [5] 刘兴龙, 刘罡, 张娜, 等. 北方地区清洁供暖对电网负荷特性影响分析[J]. 电气技术, 2019, 20(2): 57-63. [6] 李瑾, 刘金朋, 王建军. 采用支持向量机和模拟退火算法的中长期负荷预测方法[J]. 中国电机工程学报, 2011, 31(16): 63-66. [7] 席雅雯, 吴俊勇, 石琛, 等. 融合历史数据和实时影响因素的精细化负荷预测[J]. 电力系统保护与控制, 2019, 47(1): 80-87. [8] 刘起铭, 加玛力汗·库马什, 华东, 等. 基于支持向量机的负荷预测分析[J]. 电气技术, 2013, 14(5): 34-36. [9] 肖白, 聂鹏, 穆钢, 等. 基于多级聚类分析和支持向量机的空间负荷预测方法[J]. 电力系统自动化, 2015, 39(12): 56-61. [10] 梁智, 孙国强, 李虎成, 等. 基于VMD与PSO优化深度信念网络的短期负荷预测[J]. 电网技术, 2018, 42(2): 598-606. [11] 李元诚, 刘克文. 面向大规模样本的核心向量回归电力负荷快速预测方法[J]. 中国电机工程学报, 2010, 30(28): 33-38. [12] 彭道刚, 陈跃伟, 钱玉良, 等. 基于粒子群优化-支持向量回归的变压器绕组温度软测量模型[J]. 电工技术学报, 2018, 33(8): 1742-1749, 1761. [13] 葛少云, 贾鸥莎, 刘洪. 基于遗传灰色神经网络模型的实时电价条件下短期电力负荷预测[J]. 电网技术, 2012, 36(1): 224-229. [14] 董晓宁, 杨国华, 王岳, 等. 基于碳交易的含风光发电的电力系统低碳经济调度[J]. 电气技术, 2019, 20(3): 67-71. [15] 崔杨, 李莉, 陈德荣. 基于最小二乘支持向量机的超短期风电负荷预测[J]. 电气自动化, 2014, 36(5): 35-37. [16] 李小燕. 考虑气象因素的电力系统短期负荷预测研究[D]. 广州: 华南理工大学, 2013. [17] 彭堃, 陈星莺, 李斌, 等. 气象环境对电网负荷的影响因素分析[J]. 电力需求侧管理, 2016, 18(1): 8-13. |
|
|
|