|
|
Inductive overvoltage calculation and simulation of structure based on wave equation solution |
Qiu Yucheng, Li Donghui |
Dalian Jiaotong University, Dalian, Liaoning 116028 |
|
|
Abstract In order to study the development law of lightning induced overvoltage on transmission lines, based on the theory of lightning electromagnetic field, the second-order Taylor series is used to expand the expression of the lightning current double exponential function, and the correction factor is introduced to offset the error of the latter items when the expansion is performed. You can get an expanded double exponential expression and verify the uncompressed and unexpanded waveforms by simulation. Using this expression, the differential expression of the vertical electric field of the lightning is derived by the dipole method, and the analytical solution of the integrated vertical electric field of the lightning is obtained. Combined with the field-line coupling equation of the transmission line, the Dalangbel formula is used to solve the wave equation after the deformation of the coupled equation, and the scattered field voltage on the line is solved, and then the induced overvoltage is obtained, and the appropriate parameter values are selected through simulation to verify the correctness.
|
Received: 25 May 2019
Published: 18 January 2020
|
|
|
|
Cite this article: |
Qiu Yucheng,Li Donghui. Inductive overvoltage calculation and simulation of structure based on wave equation solution[J]. Electrical Engineering, 2020, 21(1): 31-36.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2020/V21/I1/31
|
[1] 张岩, 刘福贵, 汪友华, 等. 改进的双指数函数雷电流波形及其辐射电磁场的计算[J]. 电工技术学报, 2013, 28(增刊2): 133-139. [2] 景弘, 王思华. 基于时域差分法的雷击回击通道周围空间电磁场研究[J]. 电瓷避雷器, 2017(5): 65-70. [3] 余占清, 曾嵘, 王绍安, 等. 配电线路雷电感应过电压仿真计算分析[J]. 高电压技术, 2013, 39(2): 415-422. [4] 刘欣, 崔翔. 电气化铁路接触网雷电感应过电压计算及其闪络概率研究[J]. 华北电力大学学报:自然科学版, 2013, 40(2): 10-16. [5] 张红. 高电压技术[M]. 北京: 中国电力出版社, 2006. [6] 卢萍. 环境参数雷电流模型的研究[D]. 昆明: 云南师范大学, 2016. [7] Rubinstein M, Uman M A.Transient electric and magnetic-fields associated with establishing a finite electrostatic dipole, revisited[J]. IEEE Transactions on Electromagnetic Compatibility, 1991, 33(4): 312-320. [8] Cooray V.Caculating lightning-induced overvoltages in power lines. A comparison of two coupling models[J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 36(3): 179-182. [9] 周邦寅, 王一平, 李立. 数学物理方程[M]. 北京: 电子工业出版社, 2005. [10] 周玉娟, 李凯. 架空线路雷电感应过电压的避雷器与避雷线的防护比较[J]. 电瓷避雷器, 2018(6): 86-90. [11] GB/T 50064—2014. 交流电气装置的过电压保护和绝缘配合设计规范[S]. [12] Coelho V L, Raizer A, Paulino JOS.Analysis of the lightning performance of overhead distribution lines[J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1706-1712. [13] Hoidalen H K.Calculation of lightning-induced voltages in models including lossy ground effects[C]// International Conference on Power Systems Transients (IPST 2003), 2003: 1-6. [14] Gulyas A, Szedenik N.3D simulation of the lightning path using a mixed physical-probabilistic model-The open source lightning model[J]. Journal of Electro- statics, 2009, 67(2): 518-523. [15] Heidler F, Cvetic J M, Stanic B V.Calculation of lightning current parameters[J]. IEEE Transactions on Power Delivery, 1999, 14(2): 399-404. [16] IEEE Std1410—2010. IEEE guide for improving the lightning performance of electric power overhead distribution lines[S]. |
|
|
|