|
|
Frequency domain analytical method for parallel ferroresonance state of distribution system with neutral point ungrounded |
Han Guoqiang1, Liu Xianglong1, ZhaoYilong2, Zhang Zhihua2, Zou Bing3 |
1. Shandong Shengli Tonghai Group Dongying Tianlan Energy Saving Technology Co., Ltd, Dongying, Shandong 257200; 2. College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580; 3. Operation Management Center of Shengli Oilfield Branch of Sinopec Corp., Dongying, Shandong 257000 |
|
|
Abstract In recent years, cables have been widely used instead of overhead lines in the distribution network, and the increase of the distributed capacitance to the ground makes the system far beyond the parametric resonance region. However, when the single-phase grounding fault, especially the intermittent arc grounding fault, disappears, the ferroresonance phenomenon caused by PT saturation occurs from time to time. Non-ground neutral medium voltage power distribution system is based on the parallel equivalent model, using the describing function method to calculate the resonant state of the line parameters, analyzes the relationship between electric current and magnetic flux and the laws between the nonlinear equations. The incremental method is used to find out the resonance state under the condition of the stability criterion of solution, non-ground neutral medium voltage power distribution system is constructed in parallel ferro-resonance state frequency domain analysis method, to analysis provides theory basis for ferromagnetic resonance frequency distribution of the distribution network. Simulation results show the effectiveness of this method.
|
Received: 08 March 2020
|
|
|
|
Cite this article: |
Han Guoqiang,Liu Xianglong,ZhaoYilong等. Frequency domain analytical method for parallel ferroresonance state of distribution system with neutral point ungrounded[J]. Electrical Engineering, 2020, 21(10): 88-92.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2020/V21/I10/88
|
[1] 梅成林, 张超树. 电压互感器铁磁谐振分析[J]. 电网技术, 2008, 32(增刊2): 311-313. [2] Teron A C, Bartlett A, Duan N, et al.Estimating the nonlinear oscillation frequency of a power system using the harmonic balanced method[C]//Power & Energy Society General Meeting. IEEE, 2016. [3] Ben-Tal A, Kirk V, Wake G.Banded chaos in power systems[J]. IEEE Transactions on Power Delivery, 2001, 16(1): 105-110. [4] 林莉, 何月, 王军兵, 等. 中性点不接地电网单相接地时电压互感器损坏机理[J]. 高电压技术, 2013, 39(5): 1114-1120. [5] 李云阁, 施围. 应用解析法分析中性点接地系统中的工频铁磁谐振-谐振判据和消谐措施[J]. 中国电机工程学报, 2003, 23(9): 141-145. [6] Jing Z, Xu D, Yu C, et al.Bifurcations, chaos, and system collapse in a three node power system[J]. International Journal of Electrical Power & Energy Systems, 2003, 25(6): 443-461. [7] 赵小军, 张晓欣, 李慧奇, 等. 基于谐波平衡法的变压器直流偏磁电路-磁路频域耦合模型[J]. 电工技术学报, 2014, 29(9): 211-218. [8] 刘凡, 孙才新, 司马文霞, 等. 铁磁谐振过电压混沌振荡的理论研究[J]. 电工技术学报, 2006, 21(2): 103-107. [9] 石启新, 谈顺涛. 基于Matlab的电压互感器铁磁谐振数字仿真[J]. 高电压技术, 2004, 30(8): 25-27, 49. [10] 刘玉凤, 宋成伟, 吴作元. 开磁路电压互感器防铁磁谐振性能分析[J]. 变压器, 2018, 55(8): 52-55. [11] 葛栋, 鲁铁成, 王平. 配电网铁磁谐振消谐机理仿真计算研究[J]. 高电压技术, 2003, 29(11): 15-17. [12] 蒋德福. 分频谐振的计算和分析[J]. 高电压技术, 1985(3): 35-41. [13] 秦连城, 魏国平, 徐贵林, 等. 电压互感器铁磁谐振的计算及分析[J]. 高电压技术, 1987(4): 34-38. [14] 安婷, 刘庆成. 铁磁谐振过电压的理论分析[J]. 电网技术, 1986(4): 20-26. [15] 金宜民. 应用增量描述函数理论计算断路器均压电容引起的铁磁谐振过电压[J]. 高电压技术, 1987(3): 33-38, 32. [16] 李其莹. 中性点不接地系统铁磁谐振的并联电路计算模型与诊断方法[J]. 变压器, 2019, 56(2): 34-38. [17] Mozaffari S, Sameti M, Soudack A C.Effect of initial conditions on chaotic ferroresonance in power transformers[J]. IEE Proceedings-Generation, Trans- mission and Distribution, 2002, 144(5): 456-460. [18] 哈恒旭, 杜正旺, 周海全, 等. 配电网PT铁磁谐振的机理分析[J]. 电力科学与技术学报, 2010, 25(1): 60-66. |
|
|
|