|
|
Voltage sag control technology based on static var generator split-control |
Gong Bo1, Zhao Jianyang1, Liu Huiqiao2 |
1. China Energy Engineering Group Tianjin Electric Power Design Institute Co., Ltd, Tianjin 300400; 2. Department of Automation Engineering, Zhonghuan Information College, Tianjin University of Technology, Tianjin 300380 |
|
|
Abstract Voltage sag will seriously affect the safety of industrial production, especially causes the industrial production line using a large number of inverters to stop working, which is solved by a voltage sag compensation technology based on SVG split phase control technology. With the help of the reactive power absorption or emission characteristics of real-time, rapid, accurate of SVG equipment, the technology can intelligently select the instantaneous fault control strategy through the bus condition logic analysis module when the single-phase or multi-phase instantaneous ground short-circuit fault or instantaneous inter phase short-circuit condition occurs, in order to ensure that the voltage sensitive electrical equipment can always work normally. It ensures the production line connection Continuous safe operation which will not extend the voltage sag problem to the superior power system. By Matlab/Simulink, the simulation of single-phase and phase to phase instantaneous short circuit is carried out. The simulation results show that SVG equipment can compensate the voltage of sag and meet the normal operation of all electrical equipment in the same bus.
|
Received: 30 January 2020
|
|
|
|
Cite this article: |
Gong Bo,Zhao Jianyang,Liu Huiqiao. Voltage sag control technology based on static var generator split-control[J]. Electrical Engineering, 2020, 21(9): 33-38.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2020/V21/I9/33
|
[1] 彭卉, 邹舒, 付永生, 等. 冲击负荷接入电网的电能质量分析与治理方案研究[J]. 电力系统保护与控制, 2014, 42(1): 54-61. [2] 徐长宝, 耿亮, 王大力, 等. 基于MMC柔性直流输电背靠背样机的研制[J]. 电气技术, 2013, 14(12): 33-38. [3] 冯思硕, 王金花, 杨欢, 等. 混合钳位式三电平逆变器新型调制策略研究[J]. 电工技术学报, 2016, 31(13): 46-54. [4] 李正明, 刘亮, 方聪聪, 等. 具有谐波抑制和无功补偿功能的并网逆变器[J]. 电力电子技术, 2016, 50(9): 30-34. [5] 聂程, 王跃, 雷万钧, 等. 注入式有源谐波电阻谐振抑制方法[J]. 电源学报, 2018, 16(2): 51-58. [6] 刘青松. 100A/400V模块化电能质量综合治理装置的研制[J]. 电气技术, 2019, 20(12): 46-50, 59. [7] Shi Y, Liu B, Shi Y, et al.Individual phase current control based on optimal zero-sequence current separation for a star-connected cascade STATCOM under unbalanced conditions[J]. IEEE Transactions on Power Electronics, 2016, 31(3): 2099-2110. [8] 王晖, 常鲜戎, 郑焕坤. 基于改进瞬时对称分量与三点算法的相量测量新算法[J]. 电力系统保护与控制, 2011, 39(19): 115-120. [9] 刘刚, 孙庆文, 肖烨然. 永磁同步电机用坐标变换的电流谐波抑制方法[J]. 电机与控制学报, 2015, 19(5): 30-36. [10] 周乐明, 罗安, 陈燕东, 等. 单相LCL型并网逆变器功率控制及有源阻尼优化方法[J]. 电工技术学报, 2016, 31(6): 144-154. [11] 殷晓东, 罗登, 李祖勇, 等. 一种双向隔离DC-DC变换器二次纹波电压抑制方法[J]. 电工技术学报, 2018, 33(6): 1356-1363. [12] 李坤, 郑文帅, 马超, 等. 基于单相逆变器的比例谐振控制设计[J]. 电气技术, 2019, 20(12): 23-27, 45. |
|
|
|