|
|
Traction network overvoltage identification based on short time Fourier transform and deep learning |
JIA Junyi, WU Mingli, SONG Kejian, WANG Qi |
School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044 |
|
|
Abstract Traction network overvoltage affects the normal operation of electrified railways. Identification of traction network overvoltage is helpful to improve the reliability of traction power supply system. In view of the nonlinearity and instability of traction network overvoltage, the short-time Fourier transform is used to convert the time-domain waveform of overvoltage into two-dimensional time-frequency diagram. Fast identification of ferromagnetic resonance overvoltage is realized by feature extraction and threshold setting. Then the self-learning ability of convolutional neural network is used to analyze the deep relationship between the time-frequency diagram characteristics and the overvoltage of traction network. The convolutional neural network realizes the identification of into/out neutral-section overvoltage, vacuum circuit breaker overvoltage and high-frequency resonance overvoltage. The test result shows that the accuracy of this method is over 90%.
|
Received: 03 December 2020
|
|
|
|
Cite this article: |
JIA Junyi,WU Mingli,SONG Kejian等. Traction network overvoltage identification based on short time Fourier transform and deep learning[J]. Electrical Engineering, 2021, 22(10): 1-10.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I10/1
|
[1] JI Changlin, YANG Shaobing.Voltage online moni- toring and overvoltage identification based on train- mounted device[C]//2018 International Conference on Power System Technology, 2018: 3801-3808. [2] 季昌琳. 牵引网电压质量监测系统开发及数据分析[D]. 北京: 北京交通大学, 2019. [3] 张洛. 电力系统操作过电压特征提取和识别研究[D]. 成都: 西华大学, 2016. [4] 张灵杰, 缪勇, 奚玲玲. 基于小波理论的频带自适应故障选线法及其在船舶电网中的应用[J]. 船舶工程, 2019, 41(增刊2): 91-96. [5] 米正英, 王瑜, 王立东. 电弧信号小波去噪分析[J].电气技术, 2020, 21(3): 103-107, 116. [6] 张杰, 李超, 李更达, 等. 基于小波分析的特高压直流输电线路单端电压暂态保护[J]. 电气应用, 2019, 38(7): 12-19. [7] 李建闽, 林海军, 梁成斌, 等. 基于双分辨率S变换和学习向量量化神经网络的电能质量扰动检测方法[J]. 电工技术学报, 2019, 34(16): 3453-3463. [8] 王春雷, 路小娟. 一种基于深度学习的电机轴承故障诊断方法[J]. 兰州交通大学学报, 2020, 39(2): 42-50. [9] 刘创华, 何金, 张春晖, 等. GIS局部放电时域波形图像的模式识别方法[J]. 电力系统及其自动化学报, 2019, 31(10): 24-30. [10] 严静, 邵振国. 电能质量谐波监测与评估综述[J]. 电气技术, 2020, 21(7): 1-7. [11] 周林, 栗秋华, 刘华勇, 等. 用模糊神经网络模型评估电能质量[J]. 高电压技术, 2007(9): 66-69. [12] 闫河, 罗成, 李焕. 基于步态能量图与VGG结合的步态识别方法[J]. 重庆理工大学学报(自然科学版), 2020, 34(5): 166-172. [13] 张倩, 王建平, 李帷韬. 基于反馈机制的卷积神经网络绝缘子状态检测方法[J]. 电工技术学报, 2019, 34(16): 3311-3321. [14] 杨晓楠, 孙博, 郎燕生. 基于深度学习的特高压直流闭锁故障智能调度决策[J]. 中国电力, 2020, 53(6): 8-17. [15] 万玉苏. 高速动车组操作过电压特性与影响机制研究[D]. 成都: 西南交通大学, 2014. [16] 李浩然. 电力机车过分相铁磁谐振现象研究[D]. 北京: 北京交通大学, 2015. [17] 王娟. 高速铁路车网耦合系统网压振荡研究[D]. 北京: 北京交通大学, 2018. [18] 陈继明, 许辰航, 李鹏, 等. 基于时频分析与分形理论的GIS局部放电模式识别特征提取方法[J]. 高电压技术, 2021, 47(1): 287-295. [19] 邓睿, 刘碧, 宋文胜. 牵引供电网-多台机车耦合系统的低频振荡分析与抑制[J]. 电工技术学报, 2019, 34(增刊1): 327-335. |
|
|
|