|
|
Feeder power flow control simulation of direct current ice melting device based on modular multilevel converter |
BAN Guobang1,2, NIU Wei1,2, YANG Wenyong1,2, LI Jianwen3, LI Rong3 |
1. Electric Power Research Insitute of Guizhou Power Grid Co., Ltd, Guiyang 550002; 2. Key Laboratory of Anti-icing and Disaster Reduction of China Southern Power Grid Corporation, Guiyang 550002; 3. State Key Lab of New Energy and Power Systems of North China Electric Power University, Baoding, Hebei 071003 |
|
|
Abstract This paper expands the function of the DC ice melting device based on modular multilevel converter (MMC), uses the symmetrical topology of rectifier side to extend it into a double-ended flexible interconnection device, which is connected to the distribution network to control feeder power flow. The voltage and current of AC system is changed to meet upper-level power command changes. A certain amount of reactive power is provided from the opposite AC system when a short-term voltage fluctuation occurs in one of the AC systems. Thus the reliability of the distribution network's power supply is improved while the utilization rate of the device is increased. First, topology of the DC ice melting device based on modular multilevel converter and control method of the rectifier side are designed and explained, then a double-ended flexible interconnection device model is built on simulation platform, and the voltage and current waveforms of transition process is obtained by changing power reference value and temporary voltage fluctuations. The results verifiy effectiveness of the DC ice melting as a flexible interconnection device to achieve feeder power flow control outside the ice melting period.
|
Received: 09 April 2021
|
|
|
|
Cite this article: |
BAN Guobang,NIU Wei,YANG Wenyong等. Feeder power flow control simulation of direct current ice melting device based on modular multilevel converter[J]. Electrical Engineering, 2021, 22(9): 27-33.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I9/27
|
[1] 许可, 鲜杏, 程杰, 等. 考虑分布式电源接入的中压配网接线方式研究[J]. 电气技术, 2015, 16(11): 16-28. [2] 敬华兵. 兼具多功能的直流融冰技术及应用研究[D].长沙: 中南大学, 2013: 1-2. [3] 杨晓峰. 模块组合多电平换流器(MMC)研究[D]. 北京: 北京交通大学, 2011: 15-17. [4] 周乐园. 应用于10kV配电网中的双输出MMC拓扑的研究[D]. 杭州: 浙江大学, 2019: 6-13. [5] 杨晓峰, 郑琼林, 薛尧, 等. 模块化多电平换流器的拓扑和工业应用综述[J]. 电网技术, 2016, 40(1): 1-10. [6] 王成山, 宋关羽, 李鹏, 等. 基于智能软开关的智能配电网柔性互联技术及展望[J]. 电力系统自动化, 2016, 40(22): 168-175. [7] 汪宝, 匡洪海, 郑丽平, 等. 分布式发电与配电网的协调发展与技术展望[J]. 电气技术, 2017, 18(3): 5-9. [8] 王成山, 李鹏, 于浩. 智能配电网的新形态及其灵活性特征分析与应用[J]. 电力系统自动化, 2018, 42(10): 13-21. [9] 周剑桥, 张建文, 施刚, 等. 应用于配电网柔性互联的变换器拓扑[J]. 中国电机工程学报, 2019, 39(1): 277-288. [10] 祁琪, 姜齐荣, 许彦平. 智能配电网柔性互联研究现状及发展趋势[J]. 电网技术, 2020, 44(12): 4665-4672. [11] 班国邦, 谈竹奎, 郝正航, 等. 多能互补柔性互联配电网在线融冰方法[J]. 南方电网技术, 2019, 13(9): 43-48. [12] 刘钟淇, 宋强, 刘文华. 新型模块化多电平变流器的控制策略研究[J]. 电力电子技术, 2009, 43(10): 5-7, 18. [13] 沈阳武, 彭晓涛, 孙元章. 背靠背双PWM变流器的协调控制策略[J]. 电网技术, 2012, 36(1): 146-152. [14] 李智诚, 吴建中, 和敬涵, 等. 软常开点的双闭环控制及其在配电网中的应用[J]. 智能电网, 2013, 1(1): 49-55. [15] 叶天华. 用于馈线互联的模块化多电平交-交变换器拓扑选型与控制策略研究[D]. 杭州: 浙江大学, 2018: 17-20. [16] 王天昊, 李鹏, 于浩, 等. 变结构条件下智能配电软开关暂态快速仿真方法[J]. 电网技术, 2018, 42(7): 2279-2285. [17] 侯立凯. 基于MMC的柔性多状态开关控制策略研究[D]. 合肥: 合肥工业大学, 2020: 18-20. [18] 贺悝, 李勇, 曹一家, 等. 考虑分布式储能参与的直流配电网电压柔性控制策略[J]. 电工技术学报, 2017, 32(10): 101-110. |
|
|
|