|
|
Refurbishment of control and protection system for Three Gorges-Changzhou HVDC project |
LI Lin1, WANG Yongping1, HUANG Zhiling1, LU Yajun2 |
1. NR Electric Co., Ltd, Nanjing 210002; 2. State Grid Economic and Technological Research Institute Co., Ltd, Beijing 102209 |
|
|
Abstract A new generation of control and protection platform has been developed to meet the refurbishment needs of the Three Gorges Changzhou ±500kV HVDC project, such as screen removal transformation and in-situ replacement of the control and protection host. It has the advantages of small size, strong performance and rich interfaces. In order to be compatible with the interface with existing external devices, the host external interface is designed to reduce the intermediate forwarding link and improve the performance of the interface. Aiming at the problems such as power generation when both sets of control hosts fail, overvoltage when line fails to step down and restart, and failure to execute accurately when the inverter side requests power back down, the control and protection strategy is optimized to improve reliability, greatly shorten the program execution cycle, and reduce the risk of commutation failure. The joint commissioning test in the plant and the field operation show that the above design scheme is effective, and the successful implementation of this scheme can provide a reference for the subsequent transformation of other projects.
|
Received: 10 August 2022
|
|
|
|
Cite this article: |
LI Lin,WANG Yongping,HUANG Zhiling等. Refurbishment of control and protection system for Three Gorges-Changzhou HVDC project[J]. Electrical Engineering, 2022, 23(12): 38-43.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2022/V23/I12/38
|
[1] 姚其新, 张侃君, 韩情涛, 等. 龙泉换流站直流控制保护系统运行分析[J]. 电力系统保护与控制, 2015, 43(11): 142-147. [2] 雷霄, 王明新, 王华伟, 等. 龙政直流闭锁事件分析及降压再启动直流电压偏高抑制[J]. 电力系统自动化, 2013, 37(8): 129-133. [3] 贺智, 李海英, 曹冬明, 等. PCS-9550直流控制保护系统在天广直流改造中的应用[J]. 江苏电机工程, 2010, 29(3): 28-31. [4] 吴林平, 杨建明, 赵文强, 等. 菲律宾Ormoc-Naga直流控制保护系统的改造[J]. 智能电网, 2014, 2(6): 16-21. [5] VINOTHKUMAR K, KASAL G, SHANTHAKUMAR MS.Enhancement of power transmission capacity of existing AC transmission lines by refurbishing to HVDC transmission[J]. Water and Energy Inter- national, 2018, 61(3): 16-19. [6] 田杰. 高压直流控制保护系统的设计与实现[J]. 电力自动化设备, 2005, 25(9): 10-14. [7] 任舟启, 杜康平, 罗朝华, 等. MACH2系统板卡程序下装平台的研制[J]. 电子世界, 2022(1):62-63. [8] 邱晶晶, 贺霖华. MACH2控制保护系统断路器控制回路典型故障详解[J]. 电气开关, 2018, 56(5): 91-93. [9] 朱柄宇. 直流控制保护MACH2系统板卡通用调试装置的设计[D]. 南京: 东南大学, 2017. [10] ±800kV特高压直流输电控制与保护设备技术要求: GB/T 25843—2017[S] GB/T 25843—2017[S]. 北京: 中国标准出版社, 2017. [11] 苗瑜, 贾轩涛, 王永胜, 等. 宾金、灵绍特高压直流保护三取二功能配置的应用研究[J]. 电气技术, 2019, 20(10): 92-98. [12] 陆锐. 特高压直流输电控制保护系统优化研究[D]. 广州: 华南理工大学, 2018. [13] 王冬伟, 郑卫红, 刘建国, 等. 超高压换流站控制保护系统独立方案设计[J]. 湖北电力, 2017, 41(10): 37-43. [14] 高本锋, 张学伟, 刘辛晔, 等. 高压直流输电保护定值整定流程的研究[J]. 电工技术学报, 2015, 30(12): 400-407. [15] 李响, 刘国伟, 冯亚东. 新一代控制保护系统通用硬件平台设计与应用[J]. 电力系统自动化, 2012, 36(14): 52-55. [16] 谭良良, 陈宏君, 徐睿, 等. UAPC控制保护平台配置软件设计[J]. 工业控制计算机, 2018, 31(4): 74-76. [17] 沈天骄, 仲浩, 王永平, 等. 自主可控特高压直流控制保护系统设计与研发[J]. 电气技术, 2022, 23(3): 50-56. [18] 范子强, 许朋见, 吴庆范, 等. DPS-5000直流输电控制保护系统设计方案[J]. 电气技术, 2021, 22(5): 78-84. [19] 卢亚军, 宋胜利, 肖鲲, 等. 特高压直流工程阀控通用接口技术[J]. 中国电力, 2017, 50(2): 34-39. [20] 张鸿, 范建忠, 刘志阳. 锦苏工程极控系统与阀控接口综述[J]. 电气技术, 2014, 15(1): 58-61. |
|
|
|