|
|
Intelligent collaborative hierarchical control of large-scale microgrid based on virtual leader uniformity |
GONG Jingying1, DING Xiying1, BI Mingtao2 |
1. Shenyang University of Technology, Shenyang 110870; 2. Liaoning Qingyuan Pumped Storage Co., Ltd, Fushun, Liaoning 113300 |
|
|
Abstract In order to solve the problem that the layout of microgrid is too decentralized to conduct centrally coordinate control, and the bus voltage is seriously vulnerable during operation, the inverter controller of each micro source is used as an agent to build a multi-agent system of microgrid, where the intelligent cooperative hierarchical control structure of microgrid is constructed with the power quality index as the consistency goal. Droop control is used in the bottom layer to control the voltage deviation caused by the uneven power distribution leading by the load change. The upper layer takes the inverter output voltage as the consistency goal, dynamically optimizes the voltage setting value of each micro source, and greatly reduces the voltage deviation of multiple micro sources. Aiming at the problem of voltage fluctuation and distortion in weak current grid, the grid voltage deviation is taken as the consistency target, where the error iterative consistency tracking control based on virtual leader is adopted, and the micro source continuously tracks the voltage reference value to reduce the voltage fluctuation. Finally, the effectiveness of the method is verified by Matlab/Simulink simulation platform.
|
Received: 09 October 2021
|
|
|
|
Cite this article: |
GONG Jingying,DING Xiying,BI Mingtao. Intelligent collaborative hierarchical control of large-scale microgrid based on virtual leader uniformity[J]. Electrical Engineering, 2022, 23(4): 42-47.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2022/V23/I4/42
|
[1] 杨新法, 苏剑, 吕志鹏, 等. 微电网技术综述[J]. 中国电机工程学报, 2014, 34(1): 57-70. [2] 阮博, 俞德华, 李斯吾. 基于一致性的微网分布式能量管理调度策略[J]. 电力系统保护与控制, 2018, 46(15): 23-28. [3] 王岳, 杨国华, 董晓宁, 等. 基于多智能体一致性的微电网无功功率分配方法研究[J]. 电力系统保护与控制, 2019, 47(17): 54-60. [4] 洪奕光, 翟超. 多智能体系统动态协调与分布式控制设计[J]. 控制理论与应用, 2011, 28(10): 1506-1512. [5] 寇凌峰, 李洋, 吴鸣, 等. 分布式微电网电压恢复协调控制策略[J]. 电工电能新技术, 2018, 37(5): 65-72. [6] 何红玉, 韩蓓, 徐晨博, 等. 交直流混合微电网一致性协调优化管理系统[J]. 电力自动化设备, 2018, 38(8): 138-146. [7] 蒲天骄, 刘威, 陈乃仕, 等. 基于一致性算法的主动配电网分布式优化调度[J]. 中国电机工程学报, 2017, 37(6): 1579-1589. [8] 赵书强, 李忍, 高本锋, 等. 光伏并入弱交流电网次同步振荡机理与特性分析[J]. 中国电机工程学报, 2018, 38(24): 105-115. [9] 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 2-14. [10] 曹文远, 韩民晓, 谢文强, 等. 交直流配电网逆变器并联控制技术研究现状分析[J]. 电工技术学报, 2019, 34(20): 4226-4241. [11] 陈杰, 刘名凹, 陈新, 等. 基于下垂控制的逆变器无线并联与环流抑制技术[J]. 电工技术学报, 2018, 33(7): 1450-1460. [12] 张金平, 汪宁渤, 黄蓉, 等. 高渗透率光伏参与电力系统调频研究综述[J]. 电力系统保护与控制, 2019, 47(15): 179-186. [13] 缪惠宇, 梅飞, 张宸宇, 等. 基于虚拟阻抗的虚拟同步整流器三相不平衡控制策略[J]. 电工技术学报, 2019, 34(17): 3622-3630. [14] 戴喜良. 基于虚拟电容补偿的级联型有源电力滤波器控制策略[J]. 电气技术, 2021, 22(6): 49-53. [15] 葛家宁, 董学育, 周磊, 等. 微电网并联逆变器改进下垂控制[J]. 电工技术, 2020(3): 25-27. [16] 涂春鸣, 高家元, 赵晋斌, 等. 弱电网下具有定稳定裕度的并网逆变器阻抗重塑分析与设计[J]. 电工技术学报, 2020, 35(6): 1327-1335. [17] COBRECES S, BUENO E J, PIZARRO D, et al.Grid impedance monitoring system for distributed power generation electronic interfaces[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(9): 3112-3121. [18] 王正仕, 陈辉明. 具有无功和谐波补偿功能的并网逆变器设计[J]. 电力系统自动化, 2007, 31(13): 67-71. [19] ZHANG Huaipin, YUE Dong, YIN Xiuxia, et al.Finite-time distributed event-triggered consensus control for multi-agent systems[J]. Information Sciences, 2016, 339: 132-142. [20] XIAO Feng, WANG Long, CHEN Jie, et al.Finite- time formation control for multi-agent systems[J]. Automatica, 2009, 45(11): 2605-2611. [21] XU Yinliang, ZHANG Wei, HUG G, et al.Cooperative control of distributed energy storage systems in a microgrid[J]. IEEE Transactions on Smart Grid, 2015, 6(1): 238-248. |
|
|
|