|
|
Lightning risk assessment of 35kV overhead lines in mountainous areas based on entropy weight and TOPSIS method |
ZHU Daojun, ZHANG Wenfeng, LI Guobin |
Dali Power Supply Bureau,Yunnan Power Grid Co.,Ltd,Dali,Yunnan 671000 |
|
|
Abstract In order to evaluate the lightning risk of overhead lines in mountainou areas more objectively, the lightning resistance level of the 35kV overhead line in different operating conditions is calculated based on the ATP-EMTP. A lightning strike risk assessment model considering mountainous terrain is established based on entropy weight and technique for order preference by similarity to an ideal solution (TOPSIS) method, and the comprehensive assessment of lightning risk between line section and tower is realized. The actual line is comprehensively evaluated, and the corresponding lightning protection suggestions are given for overhead lines located in different terrains. The results show that the lightning density has a great influence on the lightning risk of 35kV overhead lines, and lightning faults are mostly caused by induced lightning overvoltage. Installation of arresters can significantly improve the lightning protection ability of lines and inhibit the occurrence of lightning strike faults. The lightning protection scheme should be configured properly according to the different terrain and risk levels of the line.
|
Received: 26 April 2022
|
|
|
|
Cite this article: |
ZHU Daojun,ZHANG Wenfeng,LI Guobin. Lightning risk assessment of 35kV overhead lines in mountainous areas based on entropy weight and TOPSIS method[J]. Electrical Engineering, 2022, 23(8): 23-30.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2022/V23/I8/23
|
[1] 曾程. 山区35kV线路避雷线与避雷器防雷效果比较分析[D]. 长沙: 长沙理工大学, 2020. [2] 郑国鑫, 雷霞, 王湘, 等. 地震灾害模拟及配电网的风险评估[J]. 电工技术学报, 2020, 35(24): 5218-5226. [3] 李瑞芳, 吴广宁, 曹晓斌, 等. 雷电流幅值概率计算公式[J]. 电工技术学报, 2011, 26(4): 161-167. [4] 周欣佳, 蒋传文. 电气几何模型对500kV变电站雷电侵入波风险评估的影响[J]. 电气技术, 2016, 17(12): 1-4, 10. [5] 龚石林, 冯彦钊. 差异化的防雷措施在配电线路中的应用[J]. 电气技术, 2015, 16(8): 95-98. [6] 谢从珍, 白剑锋, 王红斌, 等. 基于多维关联信息融合的架空输电线路雷害风险评估方法[J]. 中国电机工程学报, 2018, 38(21): 6233-6244, 6485. [7] 阮羚, 谷山强, 赵淳, 等. 鄂西三峡地区220kV线路差异化防雷技术与策略[J]. 高电压技术, 2012, 38(1): 157-166. [8] 孙巍, 李童, 刘洋, 等. 黑龙江地区10kV配电线路防雷研究[J]. 电瓷避雷器, 2017(3): 42-46, 51. [9] 石凯. 邵阳山区10kV配电线路防雷措施研究[D]. 长沙: 长沙理工大学, 2016. [10] 宋雅楠. 基于风险评估的配电网差异化防雷研究[D]. 长沙: 长沙理工大学, 2016. [11] 马志青, 马永福, 沈宁, 等. 青海地区架空配电线路雷害风险评估与策略[J]. 青海电力, 2017, 36(4): 30-34. [12] 孙雷雷, 王小霖, 龚学毅. 基于雷电定位数据的广州白云机场10kV配网雷击风险评估[J]. 电网与清洁能源, 2014, 30(3): 40-47. [13] 耿屹楠, 曾嵘, 李雨, 等. 输电线路防雷性能评估中的复杂地形地区模型[J]. 高电压技术, 2010, 36(6): 1501-1505. [14] 电力系统雷区分布图绘制方法: DL/T 1533—2016[S] DL/T 1533—2016[S]. 北京: 中国电力出版社, 2016. [15] 陈志鼎, 张扬, 闫海兰. 基于熵权和改进AHP的中小型水电工程施工风险评估模型及应用[J]. 水电能源科学, 2016, 34(7): 171-174, 162. [16] 王洪彬, 徐亨, 童晓阳, 等. 基于结构熵权法与故障树的智能变电站保护系统扰动度在线评估方法[J].电网技术, 2019, 43(5): 1772-1787. [17] 吕志鹏, 吴鸣, 宋振浩, 等. 电能质量CRITIC- TOPSIS综合评价方法[J]. 电机与控制学报, 2020, 24(1): 137-144. [18] 黄虎, 苑吉河, 张曦, 等. 基于综合指标TOPSIS法的电网节点脆弱性评估[J]. 电测与仪表, 2019, 56(2): 59-63, 82. [19] 申元, 王磊, 马御棠, 等. 海拔高度对云南某地雷电参数的影响[J]. 电力建设, 2012, 33(4): 35-37. [20] 孟伟航, 王巨丰, 黄上师, 等. 35kV配电线路绝缘子串与多断点灭弧防雷间隙雷电冲击绝缘配合研究[J].电测与仪表, 2022, 59(5): 109-115. [21] 傅景伟, 李小平, 姚尧, 等. 10kV架空配电线路常用防雷措施防雷性能对比研究[J]. 水电能源科学, 2019, 37(12): 132-135, 139. |
|
|
|