|
|
Calculation and analysis of wind deflection in transmission lines based on K-means clustering algorithm |
ZHANG Xiaodong1, LI Bo2, ZHANG Tiange2, WANG Xiaoming2 |
1. Economic and Technical Research Institute of State Grid Inner Mongolia Eastern Electric Power Co., Ltd, Hohhot 010011; 2. Chifeng Power Supply Company of State Grid Inner Mongolia Eastern Electric Power Co., Ltd, Chifeng, Inner Mongolia 024000 |
|
|
Abstract In response to the frequent occurrence of line corridor accidents caused by wind deviation faults in the eastern Inner Mongolian region, this article uses the K-means clustering algorithm to seasonally classify and aggregate wind data from the Ningcheng region over the years. Based on the clustering results, wind deviation calculations are conducted on the transmission corridors of the Ningtian Ⅱ 220kV transmission line by season, and the risk level of transmission line inspection is divided. Data-driven methods are used to characterize the horizontal wind deviation distance characteristics of the entire transmission line’s towers during the four seasons, and their seasonal wind deviation characteristics are analyzed. The method proposed in this article provides data support for line patrol work, improving the efficiency of line patrol work for operators.
|
Received: 16 August 2023
|
|
|
|
Cite this article: |
ZHANG Xiaodong,LI Bo,ZHANG Tiange等. Calculation and analysis of wind deflection in transmission lines based on K-means clustering algorithm[J]. Electrical Engineering, 2023, 24(12): 20-26.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I12/20
|
[1] 郭振宇, 张林波, 刘宗川. 220kV输电线路风偏故障及防风偏改造[J]. 山西电力, 2015(3): 37-41. [2] 向波. 110kV输电线路风偏故障分析及对策[J]. 电子技术与软件工程, 2013(16): 127. [3] 胡鑫. 架空线路风偏多刚体模型研究与动态响应防治分析[D]. 北京: 华北电力大学, 2022. [4] 邵天晓. 架空送电线路的电线力学计算[M]. 北京: 水利电力出版社, 1987. [5] 王亚堃. 蒙东地区输电线路塔头尺寸选择与防风措施研究[D]. 沈阳: 沈阳农业大学, 2022. [6] 赵鑫. 输电线路绝缘子风偏与非同期摇摆分析[D].武汉: 华中科技大学, 2016. [7] 向亚超. 特高压V形复合绝缘子串风偏理论分析及试验研究[D]. 武汉: 华中科技大学, 2016. [8] 赵云龙, 翁兰溪, 黄文超, 等. 基于山脊地形台风风场的铁塔风振系数研究[J]. 电气技术, 2021, 22(3): 38-43. [9] WANG Jian, XIONG Xiaofu, LI Zhe, et al.Wind forecast-based probabilistic early warning method of wind swing discharge for OHTLs[J]. IEEE Transa- ctions on Power Delivery, 2016, 31(5): 2169-2178. [10] 陈振祥, 林培杰, 程树英, 等. 基于K-means++和混合深度学习的光伏功率预测[J]. 电气技术, 2021, 22(9): 7-13, 33. [11] 赵书强, 要金铭, 李志伟. 基于改进K-means聚类和SBR算法的风电场景缩减方法研究[J]. 电网技术, 2021, 45(10): 3947-3954. [12] 李敏, 陈果, 沈大千, 等. 基于改进凝聚层次聚类算法的变压器绕组及铁心故障诊断研究[J]. 高压电器, 2018, 54(1): 236-242. [13] 和敬涵, 卢育梓, 陆金耀, 等. 基于“进化”主成分分析法的用户分类及其应用[J]. 电力建设, 2017, 38(3): 101-107. [14] 张沛, 田佳鑫, 谢桦. 计及多个风场预测误差的电力系统风险快速计算方法[J]. 电工技术学报, 2021, 36(9): 1876-1887. [15] 艾欣, 杨子豪, 胡寰宇, 等. 基于改进k-means算法的VPP负荷曲线聚类方法及应用[J]. 电力建设, 2020, 41(5): 28-36. [16] 刘晓鹏, 赵贤根, 刘磊, 等. 长空气间隙放电通道的绝缘恢复特性[J]. 电工技术学报, 2021, 36(2): 380-387. [17] 张殿生主编. 国家电力公司东北电力设计院编著. 电力工程高压送电线路设计手册[M]. 2版. 北京: 中国电力出版社, 2003. [18] 电力安全工作规程线路部分: Q/GDW 1799 Q/GDW 1799.2—2013[S]. 北京: 中国电力出版社, 2014. |
|
|
|