|
|
Assessment of power supply capacity for traction power supply system based on negative list |
FENG Wenjie1, XU Hong1, LI Jiantao2, ZHANG Wanqi3, MENG Lingyu3 |
1. Power Supply Branch of Guoneng Xinshuo Railway Co., Ltd, Ordos, Inner Mongolia 010300; 2. Xuejiawan Power Supply Branch, Inner Mongolia Electric Power (Group) Co., Ltd, Ordos, Inner Mongolia 010300; 3. School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044 |
|
|
Abstract During the whole life cycle of electrified railway, power supply capacity assessment is carried out throughout the initial scheme design, line operation, and upgrading and transformation. Based on the existing standards and pain points and weak points of field maintenance, this paper analyzes the factors affecting the performance of traction power supply system. Five sub-indicators including winding hot spot temperature and transformer drop capacitance are determined from the aspects of traction transformer load capacity and catenary power supply quality. Then, the core indexes are deducted and judged based on the management mode of negative list. The threshold scores are used to estimate the system abnormality. Analytic hierarchy process (AHP) is further used to set the weights of each index layer to establish a real-time power supply capacity assessment system. Finally, the feasibility of the assessment system is verified based on the measured data of Shenshuo railway obtained from the deployment platform. The results show that the corresponding power supply section has an assessment score lower than 70 from 2:00 am to 2:30 am. Based on this, abnormal tracing is carried out, and the train organization during the corresponding time is adjusted to assist the on-site maintenance, which can improve the system operation reliability and maintenance efficiency.
|
Received: 16 September 2023
|
|
|
|
Cite this article: |
FENG Wenjie,XU Hong,LI Jiantao等. Assessment of power supply capacity for traction power supply system based on negative list[J]. Electrical Engineering, 2023, 24(12): 27-34.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I12/27
|
[1] 周吉, 马春莲, 尚玉冰. 大秦线牵引变电所跳闸原因分析及应对措施[J]. 电气化铁道, 2005, 16(5): 10-13. [2] 王英. 京秦铁路供电系统增容改造方案研究[J]. 铁道标准设计, 2010, 54(5): 113-115. [3] 李杰琼. 重载铁路牵引供电系统改造方案研究[D]. 北京: 华北电力大学, 2015. [4] 乔利峰. 大准铁路接触网设备烧损的原因与预防[J]. 硅谷, 2014, 7(19): 173-175. [5] 乔保元. 大准铁路开行两万吨列车相关问题研究[J]. 科技传播, 2014, 6(21): 76-78. [6] 葛少云, 孙昊, 刘洪, 等. 考虑可靠性与故障后负荷响应的主动配电网供电能力评估[J]. 电力系统自动化, 2019, 43(6): 77-84. [7] 吴命利. 电气化铁道牵引网的统一链式电路模型[J]. 中国电机工程学报, 2010, 30(28): 52-58. [8] 张俊骐, 吴命利. 基于多负荷端口戴维南等效的电气化铁路牵引网潮流算法[J]. 电工技术学报, 2018, 33(11): 2479-2485. [9] 王辉, 刘炜, 李群湛, 等. 基于源网荷统一链式电路的交流电气化铁路动态潮流计算[J]. 中国电机工程学报, 2022, 42(11): 3936-3953. [10] SONG Yang, WANG Hongrui, LIU Zhigang.An investi- gation on the current collection quality of railway pantograph-catenary systems with contact wire wear degradations[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11. [11] WEI Xiukun, JIANG Siyang, LI Yan, et al.Defect detection of pantograph slide based on deep learning and image processing technology[J]. IEEE Transa- ctions on Intelligent Transportation Systems, 2020, 21(3): 947-958. [12] 张存竹. 高速铁路牵引供电系统供电能力评估方法[J]. 电工技术, 2022(22): 226-228. [13] 张征. 地铁牵引供电系统供电能力评估及仿真软件开发[D]. 北京: 北京交通大学, 2021. [14] 吴命利, 杨少兵, 翟铁久. 电气化铁路接入电网谐波预评估有关问题分析及谐波国家标准修订建议[J]. 铁道学报, 2016, 38(8): 1-7. [15] 黄硕, 吴命利. 电气化铁路牵引供电系统可靠性评价系统研究[J]. 机车电传动, 2020(1): 85-90. [16] 电力变压器第7部分: 油浸式电力变压器负载导则: GB/T 1094 GB/T 1094.7—2008[S]. 北京: 中国标准出版社, 2009. [17] IEEE recommended practice for establishing liquid- filled and dry-type power and distribution transformer capability when supplying nonsinusoidal load currents- redline: C57.110—2008[S]. [18] 轨道交通牵引供电系统电压: GB/T 1402—2010[S] GB/T 1402—2010[S]. 北京: 中国标准出版社, 2011. [19] 李振生, 孙佳龙, 杜剑行, 等. 高压配电网剩余供电能力计算及应用[J]. 电气技术, 2021, 22(7): 78-82. [20] 电气化铁路牵引变压器技术条件: TB/T 3159—2007[S] TB/T 3159—2007[S]. 北京: 中国铁道出版社, 2007. [21] 电能质量公用电网谐波: GB/T 14549—1993[S] GB/T 14549—1993[S]. 北京: 中国标准出版社, 1994. [22] 马晓娟, 张明明, 梁忠生, 等. 基于鱼骨图和层次分析法的小型化低压开关柜温升影响因素研究[J]. 电气技术, 2023, 24(1):36-43. [23] 张明锐, 黎娜, 龚晓冬. 城轨交通牵引系统谐波电流引起的主变压器降容率分析[J]. 铁道学报, 2011, 33(12): 38-45. |
|
|
|