|
|
Research progress and challenges of the linear motor technology for direct driving knitting needle |
FAN Liangzhi, LIN Zizhen, CHEN Zhen, LIU Yihang |
School of Mechanical Engineering & Automation, Wuhan Textile University, Wuhan 430073 |
|
|
Abstract The linear motor technology for direct driving knitting needle is able to improve production efficiency of conventional knitting processes by an order of magnitude, and has the potential to achieve three-dimension fabrics weaving in the future. In a long time, because of the dual challenges of technical difficulty and economic cost, it's obscure in the research demand of direct knitting linear motor, and corresponding technology develops very slowly. This paper starts from the fundamental performance specifications of knitting machine and makes the research demand clear. Three key technologies are summarized, including ultra-thin linear motor design, multi-physics field coupling in ultra-thin linear motor martrix, and multi-degree-of-freedom motor matrix. Comprehensive domestic and foreign researches are reviewed, and the research progress of electric knitting needle design is made clear in detail. Current challenges and corresponding countermeasures are put forward regarding structural failure mechanism that arises from multi-physics field coupling inside linear motor matrix, which positively responds the ergent era development question of tradition textile industry.
|
Received: 05 February 2024
|
|
|
|
Cite this article: |
FAN Liangzhi,LIN Zizhen,CHEN Zhen等. Research progress and challenges of the linear motor technology for direct driving knitting needle[J]. Electrical Engineering, 2024, 25(6): 1-13.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I6/1
|
[1] SPENCER D J.Knitting technology: a comprehensive handbook and practical guide[M]. Third Edition. Cambridge: Woodhead Publishing Limited, 2001. [2] LAITHWAITE E R, NASAR S A.Linear-motion electrical machines[J]. Proceedings of the IEEE, 1970, 58(4): 531-542. [3] 张明元, 马伟明, 汪光森, 等. 飞机电磁弹射系统发展综述[J]. 舰船科学技术, 2013, 35(10): 1-5. [4] 邓自刚, 刘宗鑫, 李海涛, 等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报, 2022, 57(3): 455-474, 530. [5] 滕伟, 穆海华, 周云飞. 光刻机工作台运动控制中的若干关键问题[J]. 机械工程学报, 2014, 50(8): 165-173. [6] 大竹伸光. 平针织物的编织方法、一种横机及用该横机编织的新颖平针织物[P]. 日本: CN87102294, 1987-09-30. [7] 陈利, 孙颖, 马明. 高性能纤维预成形体的研究进展[J]. 中国材料进展, 2012, 31(10): 21-29, 20. [8] 徐伟, 李想, 廖凯举, 等. 直线振荡电机拓扑结构及应用综述[J]. 电工技术学报, 2022, 37(21): 5377-5401. [9] 范良志, 周向阳, 毕文武, 等. 基于动力学分析的电织针电机模型选择与分析[J]. 武汉纺织大学学报, 2011, 24(3): 70-73. [10] 范良志, 李红军, 毕文武. 针织机械中的电织针阵列[P]. 湖北: CN102330265A, 2012-01-25. [11] 范良志. 电织针永磁阵列内的静磁场分布及结构刚度分析[J]. 电机与控制学报, 2013, 17(3): 84-91. [12] LIU Xiaomei, YU Haitao, SHI Zhenchuan, et al.Electromagnetic-fluid-thermal field calculation and analysis of a permanent magnet linear motor[C]//2016 IEEE Conference on Electromagnetic Field Com- putation (CEFC), Miami, FL, USA, 2016. [13] ALEKSANDROV S R, OVERBOOM T T, LOMONOVA E A.Design optimization and performance comparison of two linear motor topologies with PM-less tracks[J]. IEEE Transactions on Magnetics, 2018, 54(11): 8208408. [14] 曹龙飞, 范兴纲, 李大伟, 等. 基于快速有限元的永磁电机绕组涡流损耗半解析高效计算[J]. 电工技术学报, 2023, 38(1): 153-165. [15] XING Zezhi, WANG Xiuhe, ZHAO Wenliang.Fast calculation of electromagnetic vibration of surface- mounted PMSM considering teeth saturation and tangential electromagnetic force[J]. IEEE Transactions on Industrial Electronics, 2024, 71(1): 316-326. [16] PAN Donghua, LI Liyi, WANG Mingyi.Modeling and optimization of air-core monopole linear motor based on multiphysical fields[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9814-9824. [17] 邢军强, 汪明武, 孔莹莹. 基于流固耦合的永磁直驱风力发电机传热分析[J]. 电气技术, 2021, 22(1): 47-52. [18] 宁倩, 李桥, 高兵, 等. 电-磁-机-声多场边界下的超磁致伸缩IV型弯张换能器设计方法[J]. 电工技术学报, 2023, 38(12): 3112-3121. [19] ZHANG B, WANG A, DOPPELBAUER M.Multi- objective optimization of a transverse flux machine with claw-pole and flux-concentrating structure[J]. IEEE Transactions on Magnetics, 2016, 52(8): 8107410. [20] 张邦富, 程明, 王飒飒, 等. 基于改进型代理模型优化算法的磁通切换永磁直线电机优化设计[J]. 电工技术学报, 2020, 35(5): 1013-1021. [21] 徐晔鎏, 贾广隆, 张凤阁. 基于代理模型的内置式永磁同步电机多目标优化设计[J]. 电气技术, 2023, 24(5): 23-29. [22] AHMED S, GRABHER C, KIM H J, et al.Multifi- delity surrogate assisted rapid design of transverse- flux permanent magnet linear synchronous motor[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7280-7289. [23] PEI Zhongliang, ZHAO Jiwen, SONG Juncai, et al.Temperature field calculation and water-cooling structure design of coreless permanent magnet syn- chronous linear motor[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 1065-1076. [24] 戴睿, 张岳, 王惠军, 等. 基于多物理场近似模型的高速永磁电机多目标优化设计[J]. 电工技术学报, 2022, 37(21): 5414-5423. [25] WANG Yuchen, ZHANG Hengliang, ZHANG Junli, et al.Kriging-assisted multiobjective optimization of embedded magnetic encoder in PM synchronous machines[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2509512. [26] 谢冰川, 张岳, 徐振耀, 等. 基于代理模型的电机多学科优化关键技术综述[J]. 电工技术学报, 2022, 37(20): 5117-5143. [27] 杨思莹, 王松, 杨丰野, 等. 基于增量网络法的变压器绕组等效电路参数灵敏度分析[J]. 电气技术, 2023, 24(3): 9-22. [28] 王天煜, 汪泽润, 白斌, 等. MW 级高速永磁电机转子强度敏感性分析[J]. 电工技术学报, 2021, 36(增刊1): 107-114. [29] 李玮, 汪泽润, 张凤阁. 基于FEM/Kriging近似模型结合进化算法的表贴式高速永磁电机转子强度优化[J]. 电工技术学报, 2023, 38(4): 936-956. [30] 季勇. 针织全成形纬编无缝技术进展[J]. 纺织导报, 2021(10): 42-44. [31] HASHIMOTO S. Driving apparatus for needles of knitting machine[P]. EP: EP95119594-0, 1995-12-12. [32] 相川利広. 編み針駆動用リニアモータ[P]. 日本: JPH08291445, 1996-11-05. [33] 諫山正刚. 自動編み機[P]. 日本: JP3377717B2, 2003-02-17. [34] 豊岡芳郎. 横編機における編針駆動用のリニアモータユニツト[P]. 日本: JPH11200205, 1997-07-27. [35] GATI G. Knitting machine[P]. US: US3779041A, 1973-12-18. [36] KRESIMIR M. Guide bar-driving apparatus in knitting machine[P]. EP: EP1619281, 2006-01-25. [37] 姬建正, 董艳红. 经编机电子式横移机构专利技术分析[J]. 轻纺工业与技术, 2020, 49(11): 80-81. [38] YATCHEV I, RUDNICKI M, HINOV K, et al.Optimization of a permanent magnet needle actuator[J]. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engin- eering, 2012, 31(3): 1018-1028. [39] YATCHEV I, HINOV K, GUEOFGIEV V.3D magnetic field modelling and force computation of a permanent magnet linear actuator[J]. Diffusion and Defect Dara. Solid State Data, Part B. Solid State Phenomena, 2009, 152: 364-368. [40] WEAVER W. Shuttle-actuating mechanism for looms[P]. US: US0541581, 1895-06-25. [41] FAN Liangzhi, ZHOU Xiangyang, WU Shilin.Electromagnetic and FEM analysis of a novel electric driving knitting needle of moving coil stack PMLM schema[C]//The 2020 International Conference on Internet of Things, Artificial Intelligence and Mechanical Automation (IoTAIMA), Hangzhou, China, 2020. [42] HUANG Xuzhen, LI Liyi, ZHOU Bo, et al.Tem- perature calculation for tubular linear motor by the combination of thermal circuit and temperature field method considering the linear motion of air gap[J]. IEEE Transactions on Industrial Electronics, 2014, 61(8): 3293-3931. [43] WU Yichen, MATEUS C, HAYASHI T C, et al.Multiphysics analysis of tubular linear permanent magnet synchronous motor operating immersed in crude oil[C]//12th International Symposium on Linear Drives for Industry Applications (LDIA), Neuchatel, Switzerland, 2019. [44] 范良志, 朱海平, 张超勇, 等. 基于时空域Park变换的超薄直线电机阵列集成式联动驱动控制新方法[J]. 海军工程大学学报, 2023, 35(6): 11-16. [45] 范良志. 一种用于针织机械的大规模电织针阵列驱动方法及系统[P]. 湖北: CN112962209A, 2021- 06-15. [46] 李浩源, 张兴, 杨淑英, 等. 基于高频信号注入的永磁同步电机无传感器控制技术综述[J]. 电工技术学报, 2018, 33(12): 2653-2664. [47] 邓智浩, 李争光, 祝后权, 等. 永磁同步电机无传感器控制在电力推进中的应用综述[J]. 船电技术, 2021, 41(7): 49-55. [48] 范良志, 杨晓峰, 肖志权, 等. 单对极质数槽绕线式旋变绕组配合的磁势精度[J]. 中国电机工程学报, 2021, 41(5): 1903-1913. [49] 张森林, 沈国炎. 直线电机在电子提花机中的应用[J]. 纺织学报, 2008(11): 119-123. [50] 柴嘉伟, 贵献国. 音圈电机结构优化及应用综述[J]. 电工技术学报, 2021, 36(6): 1113-1125. [51] 刘泽旭, 胥光申, 盛晓超, 等. 洛伦兹力磁悬浮织针驱动器设计与仿真[J]. 纺织学报, 2021, 42(11): 159-165. [52] 程苗苗, 翟朋辉, 张英杰, 等. 基于自学习非线性PID的音圈电机精密定位系统[J]. 电工技术学报, 2023, 38(6): 1519-1530. [53] 张弛, 吴晓光, 朱里, 等. 一种电磁驱动织针选针装置[P]. 湖北: CN104727013A, 2015-06-24. [54] 张弛, 崔先泽, 吴晓光, 等. 电磁阵列驱动的织针装置及其控制方法[P]. 湖北: CN107938141A, 2018- 04-20. [55] 吴晓光, 张弛, 张成俊, 等. 磁悬浮驱动织针选针方法及装置[P]. 湖北: CN102242457A, 2011-11-16. [56] 张成俊, 李冬冬, 游良风, 等. 一种混合式磁悬浮织针驱动装置及其控制方法[P]. 湖北: CN111648016A, 2020-09-11. [57] 赵川, 孙凤, 裴文哲, 等. 永磁悬浮技术的实现机理与发展现状[J]. 机械工程学报, 2023, 59(17): 189-207. |
|
|
|