|
|
Research on active disturbance rejection suspension controller of maglev train based on particle swarm optimization |
JIANG Yi1,2, LIAO Kanqiu1,2, ZHU Yueou1,2, TANG Biao1,2 |
1. CRRC Zhuzhou Locomotive Co., Ltd, Zhuzhou, Hu'nan 412001; 2. Hu'nan Provincial Key Laboratory of Maglev Vehicle System Integration, Zhuzhou, Hu'nan 412001 |
|
|
Abstract In order to improve the anti-interference and stability of maglev train suspension system, an active disturbance rejection suspension controller based on particle swarm optimization (PSO) is proposed. Firstly, the suspension system model of single electromagnet is established, and the active disturbance rejection controller is designed based on the model. Finally, the particle swarm optimization is introduced to self-adapt the control parameters, and the active disturbance rejection controller suitable for the system model is obtained. The simulation and single suspension platform test results show that compared with the traditional proportional integral differential (PID) controller, the PSO adaptive auto-disturbance rejection controller has better anti-interference and robustness when the system is disturbed by vertical acceleration and suspension air gap, which provides a new idea for the engineering application of maglev train suspension control algorithm.
|
Received: 04 March 2024
|
|
|
|
Cite this article: |
JIANG Yi,LIAO Kanqiu,ZHU Yueou等. Research on active disturbance rejection suspension controller of maglev train based on particle swarm optimization[J]. Electrical Engineering, 2024, 25(7): 39-44.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I7/39
|
[1] 赵牧天, 葛琼璇, 朱进权, 等. 中速磁悬浮列车分段式长定子永磁直线同步电机牵引控制策略[J]. 电工技术学报, 2022, 37(10): 2491-2502. [2] 和风, 冯洋, 佟来生, 等. 高速磁浮车辆通过平面曲线时悬浮架和电磁铁的弹性变形分析[J]. 机车电传动, 2022(4): 1-8. [3] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19-23. [4] 张文进, 林志坚, 张睿扬, 等. 基于新型跟踪微分器的磁浮车悬浮控制算法研究[J]. 铁道科学与工程学报, 2023, 20(10): 3954-3964. [5] 胡轲珽, 徐俊起, 刘志刚, 等. 基于强化学习的电磁悬浮型磁浮列车悬浮控制[J]. 同济大学学报(自然科学版), 2023, 51(3): 332-340. [6] 王金锁, 蒋启龙, 罗雨, 等. 磁悬浮系统自抗扰广义预测控制[J]. 哈尔滨工业大学学报, 2022, 54(9): 141-150. [7] 王盼盼, 杨杰, 邹吉强, 等. 基于改进自抗扰控制器的磁浮列车速度跟踪控制研究[J]. 铁道科学与工程学报, 2023, 20(1): 310-320. [8] 苗欣, 李言民, 江守亮, 等. 基于粒子群算法的磁悬浮列车控制参数优化[J]. 计算机仿真, 2021, 38(11): 117-122. [9] 杨杰, 石恒, 黄晨. 基于线性自抗扰算法的磁悬浮控制器设计与仿真[J]. 电气技术, 2020, 21(10): 54-58, 76. [10] 刘春芳, 郑文伟. 磁悬浮平台终端滑模-模糊环形耦合同步控制研究[J]. 电气技术, 2020, 21(8): 6-10. [11] 秦耀, 杨杰, 江聚松, 等. 基于改进自抗扰的永磁电磁混合悬浮型磁浮球控制方法[J]. 铁道科学与工程学报, 2023, 20(11): 4333-4343. [12] 朱进权, 葛琼璇, 王晓新, 等. 基于自抗扰和负载功率前馈的高速磁悬浮系统PWM整流器控制策略[J]. 电工技术学报, 2021, 36(2): 320-329. [13] VAN DEN BERGH F, ENGELBRECHT A P. A cooperative approach to particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 225-239. [14] 王玲, 李俐, 朱翔鸥, 等. 基于粒子群算法的强迫风冷散热器多目标优化[J]. 电气技术, 2022, 23(2): 20-25. [15] SINGH U K, TRIPATHI J P, KHANNA K.Analysis of convergence and stability of PSO for accurate estimation of the incipient faults of hydraulic pump[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46(3): 158. [16] 李秋红. 基于改进粒子群算法的前馈神经网络识别用户窃电行为[J]. 电气技术, 2022, 23(11): 44-48. [17] 温春雪, 赵天赐, 于赓, 等. 基于改进粒子群算法的储能优化配置[J]. 电气技术, 2022, 23(10): 1-9, 58. [18] 刘韵婷, 李绅科, 邵志良, 等. 基于果蝇优化算法的反馈控制型直流稳压电源研究[J]. 电气技术, 2022, 23(9): 8-13. [19] 皇甫海文, 蔡盼盼, 李庆来. 真空管道磁浮列车三电平中点钳位整流器的改进型模型预测控制研究[J]. 电气技术, 2021, 22(6): 28-35. |
|
|
|