|
|
Research and application of automatic mapping technology for power grid geographic wiring diagram for T-connections |
LU Caiyun1, JI Xianghua1, QI Lei1, ZHU Wen1, LI Qiwei2 |
1. NR Electric Co., Ltd, Nanjing 211102; 2. Dongguan Power Supply Bureau of Guangdong Power Grid Co., Ltd, Dongguan, Guangdong 523000 |
|
|
Abstract With the constantly expanding of the power grid, the geographical wiring diagram of the power grid is becoming increasingly complex. Its drawing and maintenance are very difficult, gradually becoming a major difficulty in the operation and maintenance of power dispatch automation. This article introduces an automatic mapping method for power grid geographic wiring diagrams based on a panoramic model of the power grid, which integrates multiple technologies such as specifying the scope of power plants and stations, latitude and longitude positioning, T-line synchronization generation, and multi layer display. It is suitable for various levels and complexities of power grids. This method reliesg on the interval container model and introduces T-line synchronous generation technology, greatly improving the completeness of the mapping. According to the different voltage levels of power grid equipment, the introduction of multi layer technology enables the display of equipment with different voltage levels in geographical wiring diagrams, significantly enhancing the mapping effect. The mapping layout supports manual adjustment and is not automatically updated after model changes, effectively compensating for the shortcomings of automatic mapping in local processing. This method has been applied for the first time in the dispatch control system of a smart grid in a certain region. Practice proves that this method significantly reduces the labor costs incurred in the process of drawing and updating the geographic wiring diagram of the power grid, and has broad prospects for promotion.
|
Received: 29 February 2024
|
|
|
|
Cite this article: |
LU Caiyun,JI Xianghua,QI Lei等. Research and application of automatic mapping technology for power grid geographic wiring diagram for T-connections[J]. Electrical Engineering, 2024, 25(7): 62-67.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I7/62
|
[1] 李豹, 张蔷, 王子强, 等. 电网安全约束对调度优化影响的评估方法[J]. 广东电力, 2022, 35(3): 21-29. [2] 唐涛南, 刘海林, 王卫, 等. 基于动态建模技术构建输电网运行方式校核系统的探索[J]. 电气技术, 2022, 23(10): 104-108. [3] 李少岩, 任乙沛, 顾雪平, 等. 基于短路电流约束显式线性建模的输电网结构优化[J]. 电工技术学报, 2020, 35(15): 3292-3302. [4] 钟成元, 王磊, 黄向前, 等. 基于地理信息系统的配电网停电范围智能识别方法[J]. 电气技术, 2021, 22(5): 24-31. [5] SHA Ang, AIELLO M.Topological considerations on peer-to-peer energy exchange and distributed energy generation in the smart grid[J]. Energy Informatics, 2020, 3(1): 1-26. [6] 田继伟, 王布宏, 李夏. 智能电网状态维持拓扑攻击及其对经济运行的影响[J]. 电力系统保护与控制, 2018, 46(1): 50-56. [7] 何攻, 何潜, 郑涛, 等. 复合GIS信息的电网接线图自动成图方法研究[J]. 电工技术, 2021(11): 1-4. [8] 张亮, 佟烁, 张令涛, 等. 基于地理信息与电网外部环境的电网地图设计[J]. 电力系统自动化, 2019, 43(22): 137-142. [9] 赵峻, 陈喆, 莫屾, 等. GIS与SVG视域下低压配网单线图的自动化布局算法研究[J]. 自动化技术与应用, 2021, 40(1): 40-43, 47. [10] 冯华然, 庾力维, 何敬开, 等. 基于地理信息系统技术的大规模地块负荷统计方法[J]. 广东电力, 2021, 34(1): 58-65. [11] 周欢欢, 孙福强. 基于无向图的主动配电网拓扑路径搜索方法[J]. 广东电力, 2022, 35(11): 64-71. [12] 苏运光, 罗俊, 熊浩, 等. 基于存量图形拓扑分析的厂站接线图自动生成[J]. 电力系统自动化, 2020, 44(3): 162-166. [13] 唐广瑜, 金鑫琨. 改进引力-斥力算法在配电网单线图自动生成中的应用研究[J]. 电力系统保护与控制, 2022, 50(18): 150-156. [14] 李浩, 黄晓峰, 邹豪杰, 等. 基于软阈值降噪的脉冲卷积神经网络轴承故障诊断方法[J]. 电气技术, 2024, 25(2): 12-20. [15] CAETANO C E F, LIMA A B, PAULINO J O S, et al. A conductor arrangement that overcomes the effective length issue in transmission line grounding[J]. Electric Power Systems Research, 2018, 159: 31-39. [16] 王昀, 谢海鹏, 孙啸天, 等. 计及激励型综合需求响应的电-热综合能源系统日前经济调度[J]. 电工技术学报, 2021, 36(9): 1926-1934. [17] 许洪强, 姚建国, 於益军, 等. 支撑一体化大电网的调度控制系统架构及关键技术[J]. 电力系统自动化, 2018, 42(6): 1-8. [18] 高统彤, 邵振国, 陈飞雄. 计及多能流不确定性的综合能源系统优化配置[J]. 电气技术, 2022, 23(3): 1-10. [19] 王海鑫, 袁佳慧, 陈哲, 等. 智慧城市车-站-网一体化运行关键技术研究综述及展望[J]. 电工技术学报, 2022, 37(1): 112-132. [20] 何英静, 王曦冉, 王文涛, 等. 电力市场背景下考虑设备投资潜在价值的输电网规划[J]. 电气技术, 2022, 23(12): 1-8. |
|
|
|