|
|
Fault diagnosis method for airborne autotransformer rectifier units based on support vector machine |
CHEN Yizun, ZHU Ronggeng, DENG Hanying, ZHANG Xinyu |
Civil Aviation University of China, Tianjin 300300 |
|
|
Abstract Autotransformer rectifier units (ATRU) are key electrical components of aircraft power system. In order to shorten the operation and maintenance time of power supply equipment and improve the troubleshooting efficiency, this paper proposes a fault diagnosis method for airborne autotransformer rectifier units. The time domain and frequency domain characteristic parameters of different ATRU faults are extracted. Support vector machine is used for training to form an ATRU fault diagnosis system. This paper is based on the simulated electrical signals of key nodes of ATRU under different faults, extracts and analyzes the fault features of the signal waveform information, time domain information and frequency domain information, and uses the support vector machine to identify faults. The verification results show that the proposed method can identify ATRU faults quickly and accurately.
|
Received: 22 September 2023
|
|
|
|
Cite this article: |
CHEN Yizun,ZHU Ronggeng,DENG Hanying等. Fault diagnosis method for airborne autotransformer rectifier units based on support vector machine[J]. Electrical Engineering, 2024, 25(8): 41-46.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I8/41
|
[1] 杨雪晨. 航空工业主持编制的ISO 24071:2022“飞机自耦变压整流器通用要求”国际标准正式发布[N]. 中国航空报, 2022-09-06(3792). [2] 董慧芬, 郑坤, 杨占刚. 基于GA-BRBPNN的航空自耦变压整流器故障诊断方法[J]. 电子测量与仪器学报, 2022, 36(9): 217-225. [3] 尹来宾, 许洪华, 彭晓晗, 等. 基于振动信号的锂离子电池故障诊断方法[J]. 电气技术, 2021, 22(10): 71-75. [4] 吴迪. 基于神经网络的电力电子电路故障诊断方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2017. [5] 蔡涛, 段善旭, 康勇. 电力电子系统故障诊断技术研究综述[J]. 电测与仪表, 2008, 45(5): 1-7, 48. [6] 朱大奇, 于盛林. 基于知识的故障诊断方法综述[J]. 安徽工业大学学报(自然科学版), 2002, 19(3): 197-204. [7] 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000, 26(1): 32-42. [8] 陈杰, 兰生, 林野, 等. 基于Matlab的变压器绕组变形频率响应的仿真研究[J]. 电气技术, 2022, 23(3): 23-30. [9] 钟思翀, 祝丽花, 王前超, 等. 电力变压器振动噪声分析及其有源降噪[J]. 电工技术学报, 2022, 37(增刊1): 11-21. [10] 杨思莹, 王松, 陈志豪, 等. 基于优化算法的变压器绕组等效电路建模[J]. 电气技术, 2023, 24(8): 29-36, 49. [11] 李程, 李强, 张启超, 等. 基于支持向量机递归特征消除的电缆局部放电特征寻优[J]. 电气技术, 2020, 21(1): 67-71. [12] 石鑫, 朱永利, 宁晓光, 等. 基于深度自编码网络的电力变压器故障诊断[J]. 电力自动化设备, 2016, 36(5): 122-126. [13] CRISTIANINI N, SHAWE-TAYLOT J.支持向量机导论[M]. 李国政, 王猛, 曾华军, 译. 北京: 电子工业出版社, 2004. [14] 魏银图, 张旸, 温步瀛, 等. 基于支持向量机的模块化多电平换流器子模块开路故障诊断方法[J]. 电气技术, 2023, 24(10): 1-7. [15] 韩富春, 高文军, 廉建鑫, 等. 基于免疫优化多分类SVM的变压器故障诊断新方法[J]. 电力系统保护与控制, 2012, 40(2): 106-110. [16] 丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1): 2-10. [17] CHANG C C, LIN C J.LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011(2): 21-27. |
|
|
|