|
|
Study on Association Rules Mining Algorithm for Micro-grid Fault Detection |
Zhu Wenhao1, 2, Guo Qiyi1 |
1. Department of Electrical Engineering, Tongji University, Shanghai 201804; 2. Schneider Shanghai Low Voltage Terminal Apparatus Co., Ltd, Shanghai 201109 |
|
|
Abstract In view of the problem that current fault detection methods exist large error in micro-grid fault detection, this paper presents a model based on Bayesian network and association rule mining. It firstly adopts Hash technology to optimize Apriori algorithm and remove the undesired candidate item set, conducts data mining of original data set, introduces Bayesian network for sample training to reduce detection error, and finally obtains power system detection result. Simulation results show that the proposed fault detection model based on Bayesian network and association rule mining is efficient in power system fault detection with detection error far less than that of traditional algorithm.
|
Received: 18 August 2015
Published: 18 August 2015
|
|
|
|
Cite this article: |
Zhu Wenhao,Guo Qiyi. Study on Association Rules Mining Algorithm for Micro-grid Fault Detection[J]. Electrical Engineering, 2015, 16(8): 7-10.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2015/V16/I8/7
|
[1] 周建萍, 朱建萍, 徐司聪. 微网孤岛运行时短路故障检测的仿真研究[J]. 中国电力, 2014, 47(3): 85-89. [2] 杜敏杰, 马善钊, 王建国, 等. 基于核密度估计的实时SVDD算法与电路故障检测应用[J]. 计算机测量与控制, 2014, 22(4): 1039-1041, 1045. [3] 张哲军. 引入推理模型的大型电网设备的故障检测方法[J]. 科技通报, 2014, 30(2): 111-113, 135. [4] 杜华. 基于关联规则的船舶供电系统故障检测方法研究[J]. 计算机测量与控制, 2014, 22(1): 233-235. [5] 张咪. 一种远端故障检测方案的设计与实现[J]. 电子技术应用, 2013, 39(12): 126-128, 131. [6] 张海涛, 高锦宏, 吴国新, 等. 蚁群优化算法在风电偏航故障检测中的应用[J]. 可再生能源, 2013, 31(11): 48-50, 55. [7] 原艳红. 大型煤炭机电设备的故障检测方法研究[J]. 计算机仿真, 2013, 30(8): 380-383. [8] 郑树松, 李红梅. 电动汽车PMSM驱动系统的故障检测[J]. 微电机, 2013, 46(8): 55-59. [9] 王娟, 张瑾. 高压电力计量系统故障诊断与应用研究[J]. 科学技术与工程, 2013, 13(19): 5617-5620. [10] 杜敏杰, 蔡金燕. 基于样本约简的实时SVDD算法与电路故障检测应用[J]. 微电子学与计算机, 2013, 30(7): 86-90. |
|
|
|