|
|
Accurate Calculation of Distribution of Power Frequency Electric Field for Crossing UHV Transmission Lines |
Song Fugen1, Lin Han2, Lan Sheng1 |
1. Fuzhou University, Fuzhou 350108; 2. Fujian Electrical Power Company Limited, Fuzhou 350003 |
|
|
Abstract In recent years, people’s requirement for electromagnetic protection is becoming more and more high. With the development of UHV (Ultra High Voltage), the problem of electromagnetic environment has become the main factors for the development of the power grid. The research of this paper focuses on the influence factors of electric field when UHV transmission lines have cross spanning. With the construction of UHV transmission project, AC E/UHV transmission lines inevitably appear cross spanning, the calculation method of power frequency electric field with two-dimensional has been unable to meet the requirements. This paper proposes 3-D electric field module of the ansoft software which is used to compute frequency electric field of cross area, and analyses the influence factors. The results show that power frequency electric field of cross area will be affected by the different phase difference. However, different phase sequence and different height of the UHV transmission lines will have significant influence on the power frequency electric field. In a word, On the premise of no increase of construction costs, it can obviously reduce electric field intensity by taking the reverse sequence arrangement.
|
Published: 13 January 2016
|
|
|
|
Cite this article: |
Song Fugen,Lin Han,Lan Sheng. Accurate Calculation of Distribution of Power Frequency Electric Field for Crossing UHV Transmission Lines[J]. Electrical Engineering, 2016, 17(1): 6-10.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2016/V17/I1/6
|
[1] 王晓燕, 赵建国, 邬雄, 等. 交流输电线路交叉跨越区域空间电场计算方法[J]. 高电压技术, 2011, 37(2): 411-416. [2] 甄永赞, 崔翔, 罗兆楠, 等. 直流输电线路三维合成电场计算的有限元方法[J]. 电工技术学报, 2011, 26(4): 153-160. [3] 兰生, 张振兴, 原永滨. 考虑弧垂的交流特高压输电线三维电磁场[J]. 电机与控制学报, 2012, 16(12): 42-46, 53. [4] 李永明, 范与舟, 徐禄文. 超高压输电线路铁塔附近地面工频电场仿真分析[J]. 电网技术, 2013, 37(3): 782-787. [5] 袁海燕, 傅正财. 基于有限元法的±800kV特高压直流输电线路离子流场计算[J]. 电工技术学报, 2010, 25(2): 139-146. [6] 杨勇, 陆家榆, 雷银照. 同塔双回高压直流线路地面合成电场的计算方法[J]. 中国电机工程学报, 2008, 28(6): 32-36. [7] 厉天威, 阮江军, 吴田. 并行计算高压输电线路周围电场[J]. 电工技术学报, 2009, 24(7): 1-6, 15. [8] 倪光正, 杨仕友, 钱秀英, 等. 工程电磁场数值计算[M]. 北京: 机械工业出版社, 2004. [9] 杨勇, 陆家榆, 雷银照. 极导线垂直排列直流线路地面合成电场的一种计算方法[J]. 中国电机工程学报, 2007, 27(21): 13-18. [10] Lu T B, Feng H, Zhao Z B, et al. Analysis of the electric field and ion current density under ultra high-voltage direct-current transmission lines based on finite element method[J]. IEEE Transactions on Magnetics, 2007, 43(4): 1221-1224. [11] 彭迎, 阮江军. 模拟电荷法计算特高压架空线路3维工频电场[J]. 高电压技术, 2006, 32(12): 69-73, 77. [12] 文武, 彭磊, 张小武, 等. 特高压大跨越架空线路三维工频电场计算[J]. 高电压技术, 2008, 34(9): 1821- 1825. [13] 肖冬萍. 特高压交流输电线路电磁场三维计算模型与屏蔽措施研究[D]. 重庆: 重庆大学, 2009. [14] Adel Z D, Mohamed A W. The effects of the span configurations and conductor sag on the eletric field distribution under overhead transmission lines[J]. IEEE Transactions on Power Delivery, 2010, 25(4): 2891-2902. [15] 黄峰, 孙苓生. 跨越建筑物的高压输电线三维电场仿真[J]. 华东电力, 2007, 35(12): 41-43. [16] 陈楠, 文习山, 刘波, 等. 高压输电导线三维工频电磁场计算与测量[J]. 电网技术, 2011, 35(3): 159-164. [17] 陈楠, 文习山, 蓝磊, 等. 交叉跨越输电导线三维工频电磁场计算[J]. 高电压技术, 2011, 37(7): 1752-1759. [18] 汲亚飞, 邹军. 同塔多回线路垂直排列最优相序布置方式[J]. 高电压技术, 2008, 34(1): 172-175. [19] 程炜, 刘黎刚, 张艳芳, 等. 特高压输电线路工频电场的数值仿真研究[J]. 高压电器, 2012, 48(2): 1-6. |
|
|
|