|
|
Short Circuit Analysis of -48V DC Distribution System for Communication |
Xu Huoju, Miao Xiren |
School of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108 |
|
|
Abstract With the development of society, the way of DC distribution has received broad attention for its own advantage. -48V DC distribution system as the core part of communication system has played an important role in normal communication operation. However, because of the research of DC distribution system is still in early stage, DC protection technology has become the bottleneck of development of DC distribution system. This paper studies -48V DC distribution system, introduces the structure of the system and analyzes the short circuit characteristics from the short circuit resource, short circuit point, short circuit protection and the established short circuit fault mathematical simulation model of battery. Finally, the current problem of short circuit fault protection technology is summarized and the technical research on short circuit protection for DC distribution system was prospected.
|
Published: 22 March 2016
|
|
|
|
[1] 曾嘉思, 徐习东, 赵宇明. 交直流配电网可靠性对比[J]. 电网技术, 2014, 38(9): 2582-2589. [2] 宋强, 赵彪, 刘文华, 等. 智能直流配电网研究综述[J]. 中国电机工程学报, 2013, 33(25): 9-19. [3] 张祖平. 直流配电技术的发展前景[J]. 供用电, 2015(2): 52-53. [4] 李墨雪. 直流牵引供电系统建模及基于电流变化特征量的保护算法研究[D]. 北京: 北京交通大学, 2010. [5] 易小志. 地铁馈电线路行波保护方式研究[D]. 北京:北京化工大学, 2006. [6] Jin J, Allan J, Goodman C J, et al. Single pole-to-earth fault detection and location on a fourth-rail DC railway system[J]. IEE Proceedings-Electric Power Appli- cations, 2004, 151(4): 498-504. [7] Hao Wang, Liu Jinjun, Wei Huang. Stability prediction based on individual impedance measurement for distributed DC power systems[J]. 8th International Conference on Power Electronics-ECCE Asia. 2011. [8] Tsujikawa T, Matsushima T. Remote monitoring of VRLA batteries for telecommunications systems[J]. Journal of Power Sources, 2007, 168(1): 99-104. [9] Zhao Zhendong, Huang Xing. A method of fault prediction of VRLA batteries using in communication network[J]. International Conference on Intelligent Computing and Integrated Systems 2011. [10] 薛士敏, 陈超超, 金毅, 等. 直流配电系统保护技术研究综述[J]. 中国电机工程学报, 2014, 34(19): 3114-3122. [11] 胡竞竞, 徐习东, 裘鹏, 等. 直流配电系统保护技术研究综述[J]. 电网技术, 2014, 38(4): 844-851. [12] 李芳影. 通信开关电源智能监控系统及智能模块的研制[D]. 天津: 天津大学, 2004. [13] 智宇. 先进通信电源技术发展与应用研究[D]. 北京:北京邮电大学, 2010. [14] 李克民. 蓄电池是通信电源技术维护工作中的重中之重[J]. 电信技术, 2003(5): 3-6. [15] 王平. 通信用直流-48V电源系统安全应用可靠性提升措施浅析[C]//2012年中国通信能源会议论文集. 2012. [16] 战旗. 通信直流供电系统开关电源和蓄电池维护及配置探讨[J]. 通信电源技术, 2012, 29(5): 116-119. [17] 赵淑兰. 通信电源系统配置与故障维护[J]. 通信电源技术, 2014, 31(6): 117-118. [18] 中华人民共和国通信行业标准YDT 799 2010. 通信用阀控式密封铅酸蓄电池[S]. [19] 通信局. YD/T1051 2010. 站[S]. [20] 胡海. 通信电源系统中的直流配电[J]. 通信电源技术, 2008, 25(2): 71-73. [21] 徐正喜, 姜波, 魏华, 等. 大容量铅酸蓄电池组短路特性分析研究[J]. 船电技术, 2007, 27(4): 221-226. [22] 徐国顺, 庄劲武, 杨锋, 等. 大容量蓄电池组的数学建模及短路特性研究[J]. 低压电器, 2006(11): 18-21. [23] 徐国顺, 庄劲武, 杨锋, 等. 大容量蓄电池组的数学建模及参数辨识[J]. 海军工程大学学报, 2007, 19(3): 35-38. [24] 缪希仁, 吴晓梅. 低压系统多层级短路电流早期检测与预测[J]. 电工技术学报, 2014, 29(11): 177-183. [25] 王田, 缪希仁, 孙秦阳. 基于涡流斥力机构的低压交流接触器技术[J]. 电器与能效管理技术, 2015(2): 13-18. |
|
|
|