|
|
Research on Fault Line Detection for Distribution Network based on Improved PSO to Optimize Fuzzy Neural Network |
Wang Lei1, 2, Cao Xianfeng1, 2, Luo Wei1, 2 |
1. School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009; 2. Anhui New Energy Utilization and Energy Saving Laboratory, Hefei 230009 |
|
|
Abstract Aiming at the problem of single-phase grounding fault line selection in small current grounding system that did not be solved thoroughly. This paper presents a fault line selection method of power distribution network based on improved Particle Swarm Optimization (PSO) to optimize Fuzzy Neural Network. By improving the fitness function and adaptive inertia weight of PSO, initial parameters and weights are optimized firstly, using the BP method to optimize the second time. The influence of Fuzzy Neural Network, the traditional PSO optimization of Fuzzy Neural Network and different network structures to network performance are discussed. The results of the study illustrate the improved PSO to optimize Fuzzy Neural Network is better than Fuzzy Neural Network and traditional PSO to optimize Fuzzy Neural Network in the term of line selection effect, can accurately, effectively, reliablely find fault line.
|
Published: 22 March 2016
|
|
|
|
Cite this article: |
Wang Lei,Cao Xianfeng,Luo Wei. Research on Fault Line Detection for Distribution Network based on Improved PSO to Optimize Fuzzy Neural Network[J]. Electrical Engineering, 2016, 17(3): 30-35.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2016/V17/I3/30
|
[1] 曾祥君, 尹项根, 张哲, 等. 配电网接地故障负序电流分布及接地保护原理研究[J]. 中国电机工程学报, 2001, 21(6): 85-90. [2] Zhang Zhixia, Liu Xiaopiao. Fault line Detection in Neutral Point in Effectively Grounding Power System Based on Phase-Locked loop[J]. IET Generation Transmission & Distribution, 2014, 8(2): 273-280. [3] 郭谋发, 刘世丹, 杨耿杰. 利用时频谱相似度识别的配电线路接地选线方法[J]. 中国电机工程学报, 2013, 33(19): 183-190. [4] Cui Tao, Dong Xinzhou, Bo Zhiqian, et al. Hilbert- Transform-Based transient/intermittent earth fault detection in noneffectively grounded distribution systems[J]. IEEE Transactions on Power Delivery, 2011, 26(1): 143-151. [5] 樊淑娴, 徐丙垠, 张清周. 注入方波信号的经消弧线圈接地系统故障选线方法[J]. 电力系统自动化, 2012, 36(4): 91-95. [6] 贾清泉, 石磊磊, 王宁, 等. 基于证据理论和信息熵的消弧线圈接地电网融合选线方法[J]. 电工技术学报, 2012, 27(6): 191-197. [7] 梁睿, 王洋洋. 基于直觉模糊集的单相接地故障综合选线方法[J]. 电网技术, 2011, 35(11): 228-234. [8] 陈少华, 尹胜兰, 莫哲. 基于免疫RBF网络改进小波分析的小电流接地故障选线[J]. 电力系统保护与控制, 2012, 40(3): 46-50. [9] 张俊芳, 刘鹏. 基于改进模糊神经网络的配电网故障选线研究[J]. 电力系统保护与控制, 2010, 38(22): 120-125. [10] 刘美俊. 基于改进学习算法的模糊神经网络控制系统[J]. 中国电机工程学报, 2007, 27(19): 87-92. [11] 张庭场, 耿光飞. 基于改进粒子群算法的中压配电网无功优化[J]. 电网技术, 2012, 36(2): 158-162. [12] 胡美玉, 胡志坚, 史梦梦. 基于改进粒子群优化算法的DG准入容量与优化布置[J]. 电力建设, 2014, 35(12): 111-115. [13] 高新波. 模糊聚类分析及其应用[M]. 西安: 西安电子科技大学出版社, 2004. [14] 于群, 曹娜. 电力系统建模与仿真[M]. 北京: 机械工业出版社, 2013. |
|
|
|