|
|
Multi Objective Function Pre-treatment Robust State Estimation |
Li Xiao, Gao Zonghe, Gong Chengming, Wang Yi, Zou Dehu |
State Grid Electric Power Research Institute, Nanjing 211106 |
|
|
Abstract Traditional weighted least square state estimation method with bad data identification progress cannot eliminate the influence of bad leverage data on the result of estimation. The multi objective function pre-treatment robust state estimation was proposed. This estimation use variable window wide algorithm choose the best parameter for maximum exponential square object function , and combined weighted least square estimation to get advantages of both estimator.It was robust and had good convergence. The result of estimation of test systems proved the proposed algorithm have obvious better performance.
|
Published: 20 April 2016
|
|
|
|
Cite this article: |
Li Xiao,Gao Zonghe,Gong Chengming等. Multi Objective Function Pre-treatment Robust State Estimation[J]. Electrical Engineering, 2016, 17(4): 59-62.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2016/V17/I4/59
|
[1] 于尔铿. 电力系统状态估计[M]. 北京: 水利电力出版社, 1985: 1-8. [2] 诸骏伟. 电力系统分析[M]. 北京: 中国电力出版社, 1995: 74-84. [3] 相年德, 王世缨, 于尔铿. 电力系统状态估计中的不良数据估计识别法(第一部分):理论与方法[J]. 电力技术通讯, 1979, 19(8): 1-27. [4] Monticelli A. Multiple bad data identification for state estimation by combinatorial optimization[J]. IEEE Trans. on Power Delivery, 1986, PWRD-1(3): 361-369. [5] 赵海天, 相年德, 王世缨, 等. 多不良数据的相关量测检测方法[J]. 中国电机工程学报, 1990, 10(6): 26-32. [6] 亓俊健, 何光宇, 梅生伟, 等. 电力系统抗差状态估计研究综述[J]. 电工电能新技术, 2011, 30(3): 59-64. [7] 吴文传, 郭烨, 张伯明. 指数型目标函数电力系统抗差状态估计[J]. 中国电机工程学报, 2011, 31(4): 67-71. [8] 郭烨, 张伯明, 吴文传. 指数型目标函数电力系统抗差状态估计的解法与性能分析[J]. 中国电机工程学报, 2011, 31(7): 89-95. [9] 姚诸香, 郭烨, 郭玉金, 等. 含指数型目标函数的电力系统抗差状态估计方法在江西电网中的应用[J]. 电网技术, 2012, 36(4): 155-159. [10] 付艳兰, 陈艳波, 姚锐, 等. 基于最大指数绝对值目标函数的抗差状态估计方法[J]. 电网技术, 2013, 37(11): 3166-3171. [11] David W S. On optimal and Data-Based histograms[J]. Biometrika, 1979, 66(3): 605-610. [12] Chen Badong, Xing Lei, Zhao Haiquan, et al. Generalized Correntropy for Robust Adaptive Filtering[J]. Eprint Arxiv, 2015 [13] Liu Weifeng, Pokharel P P, Principe J C. Correntropy: properties and applications in Non-Gaussian signal processing[J]. IEEE Transactions on Signal Processing, 2007, 55(11): 5286-5297. [14] Han Seungju, Rao Sudhir, Deniz, et al. An improved minimum error entropy criterion with self adjusting step-size[C]. IEEE Workshop on Machine Learning for Signal Processing, 2005. [15] Bernard Silverman. Density estimation for statistics and data analysis[M].1986. [16] Larry Wasserman. All of nonparametric statistics[M]. 2006, 125-130. [17] 何晓群. 多元统计分析[M]. 北京: 中国人民大学出版社, 2004. [18] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 北京: 高等教育出版社, 2008. |
|
|
|