|
|
Modeling and Experimental Verification of Current Transformer Harmonic Transform based on J-A Dynamic Hysteresis Model |
Chen Lixiang, Wu Danyue, Shao Zhenguo |
College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350116 |
|
|
Abstract As the complex of the modeling of iron core hysteresis loop, the electromagnetic current transformer (CT) modeling is still complex, so based on static J-A model building the CT static recursion model. The model can be used to fit the transfer characteristics of CT easily and accurately, and it has the value of application in CT simulation. Under the harmonic condition, the core hysteresis loop area will be changed with the external excitation source frequency, in order to fit the transfer characteristics of CT in the harmonic condition, the CT simulation model is builted on J-A dynamic hysteresis model and experimental verification.
|
Published: 24 August 2016
|
|
|
|
Cite this article: |
Chen Lixiang,Wu Danyue,Shao Zhenguo. Modeling and Experimental Verification of Current Transformer Harmonic Transform based on J-A Dynamic Hysteresis Model[J]. Electrical Engineering, 2016, 17(8): 14-18.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2016/V17/I8/14
|
[1] 李贞, 李庆民, 李长云, 等. J-A磁化建模理论的质疑与修正方法研究[J]. 中国电机工程学报, 2011(3): 124-131. [2] Annakkage U D, Mclaren P G, Dirks E, et al. A current transformer model based on the Jiles-Atherton theory of ferromagnetic hysteresis[J]. IEEE Transactions on Power Delivery, 2000, 15(1): 57-61. [3] 熊兰, 周健瑶, 宋道军, 等. 基于改进J-A磁滞模型的电流互感器建模及实验分析[J]. 高电压技术, 2014, 40(2): 482-488. [4] Liu S T, Huang S R, Chen H W. Using TACS functions within EMTP to set up current-transformer model based on the Jiles-Atherton theory of ferromagnetic hysteresis[J]. IEEE Transactions on Power Delivery, 2007, 22(4): 2222-2227. [5] Ertaş M, Keskin M. Dynamic hysteresis features in a two-dimensional mixed Ising system[J]. Physics Letters a, 2015, 379(26/27): 1576-1583. [6] Baghel A P S, Gupta A, Chwastek K, et al. Comprehensive modelling of dynamic hysteresis loops in the rolling and transverse directions for transformer laminations[J]. Physica B: Condensed Matter. 2015, 462: 86-92. [7] Chua L O, Bass S C. A generalized hysteresis model[J]. IEEE Transactions on circuits theory, 1972, 1(19): 36-48. [8] Malczyk R, Izydorczyk J. The frequency-dependent Jiles-Atherton hysteresis model[J]. Physica. B, Con- densed Matter, 2015, 463: 68-75. [9] Jiles D C. Modelling the effects of eddy current losses on frequency dependent hysteresis in electrically conducting media[J]. IEEE Transactions on Magnetics, 1994, 30(6): 4326-4328. [10] Jiles D C, Thoelke J B, Devine M K. Numerical determination of hysteresis parameters for the modeling of magnetic-properties using the theory of ferromagnetic hysteresis[J]. IEEE Transactions on Magnetics, 1992, 28(1): 27-35. [11] Etien E, Halbert D, Poinot T. Improved Jiles-Atherton model for least square identification using sensitivity function normalization[J]. IEEE Transactions on Magnetics, 2008, 44(7): 1721-1727. [12] Cepisca C, Andrei H, Dogaru-Ulieru V. Evaluation of the parameters of a magnetic hysteresis model[J]. Journal of Materials Processing Technology, 2007, 181(1/3): 172-176. [13] 郝晓亮, 叶美盈. 基于粒子群优化算法的Jiles- Atherton磁滞模型参数计算[J]. 浙江师范大学学报(自然科学版), 2015(2): 133-141. [14] 李晓萍, 彭青顺, 李金保, 等. 变压器铁心磁滞模型参数辨识[J]. 电网技术, 2012(2): 200-205. [15] Chandrasena W, Mclaren PG, Annakkage UD, et al. Simulation of eddy current effects in transformers[C]// IEEE CCEC 2002: CANADIAN CONFERENCE ON ELECTRCIAL AND COMPUTER ENGINEERING, VOLS 1-3, CONFERENCE PROCEEDINGS, 2002: 122-126. |
|
|
|