|
|
The Improved Partical Swarm Optimization Algorthim for Multiobjective Optimal Power Flow |
Zhang Qin1, Zhang Jianmei2, Ma Qiang1, Wang Xianhong1 |
1. Nanchong Power Supply Company of Sichuan Electric Power Corporation, Nanchong, Sichuan 637000; 2. Skill Training Center of Sichuan Electric Power Corporation, Chengdu 610071 |
|
|
Abstract The multiobjective optimimal power flow algorithm is researched in this paper. Using the improved partical swarm optimization algorthim to calculate power flow considering the cost and network loss. The fuzzy set theory is used in multiobjective function processing to make it a single objective. And the partical swarm optimization algorthim is improved through adjusting and particle position variable to avoid being into a local optimal. Using C means clustering algorithm for set esterase processing, and making the solution more satisfying the requirements of the homogenization. The correctness of the algorithm researched in this paper is proved through the IEEE system test.
|
Published: 24 October 2017
|
|
|
|
Cite this article: |
Zhang Qin,Zhang Jianmei,Ma Qiang等. The Improved Partical Swarm Optimization Algorthim for Multiobjective Optimal Power Flow[J]. Electrical Engineering, 2017, 18(10): 57-60.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2017/V18/I10/57
|
[1] 苏申, 阮玉斌, 刘庆珍. 配电网三相潮流计算方法研究[J]. 电气技术, 2017, 18(2): 1-4. [2] 江全元, 黄志光. 基于功率电流混合潮流约束的内点法最优潮流[J]. 电力系统自动化, 2009, 33(12): 32-37. [3] 杨波, 赵遵廉, 陈允平, 等. 一种求解最优潮流问题的改进粒子群优化算法[J]. 电网技术, 2006, 3(11): 6-10. [4] 胡德峰, 张步涵, 姚建光. 基于改进粒子群算法的多目标最优潮流计算[J]. 电力系统及其自动化学报, 2007, 19(3): 51-57. [5] 刘林, 王锡凡, 丁晓莺, 等. 一种恢复最优潮流可行性的实用方法[J]. 电力系统自动化, 2009, 33(19): 36-42. [6] 覃智君. 最优潮流的原对偶内点法矢量化实现[J]. 电力系统及其自动化学报, 2009, 21(5): 68-74. [7] 崔鹏程, 陈明榜, 向铁元. 基于粒子群优化算法与混合罚函数法的最优潮流计算[J]. 电网技术, 2006(30): 192-195. [8] 马草原, 孙展展, 尹志超. 基于双重混合粒子群算法的配电网重构[J]. 电工技术学报, 2016, 31(11): 120-126. [9] 赵志刚, 顾新, 李陶深.求解双层规划模型的粒子群优化算法[J]. 系统工程理论与实践, 2007(8): 92-98. [10] 刘淳安. 一种求解动态多目标优化问题的粒子群算法[J]. 系统仿真学报, 2011, 23(2): 288-293. [11] 陈柔伊, 张尧, 武志刚, 等. 改进的模糊聚类算法在负荷预测中的应用[J]. 电力系统及其自动化学报, 2005, 17(3): 73-77. [12] 刘明波, 段晓军. 一种求解多目标最优潮流的模糊优化算法[J]. 电网技术, 1999, 23(9): 23-27. [13] 乐秀, 覃振成, 尹峰. 基于自适应模拟退火遗传算法的多目标最优潮流[J]. 继电器, 2005, 33(7): 10-15. [14] 任洲洋, 颜伟, 项波, 等. 考虑光伏和负荷相关性的概率潮流计算[J]. 电工技术学报, 2015, 30(24): 181-187. [15] 娄刘娟, 金光, 张玲. 基于Matlab的动态潮流研究[J]. 电气技术, 2016, 17(5): 41-44. |
|
|
|