|
|
Research on restraint of bus voltage deviation in active distribution network based on variable power and impedance |
Huang Lijun, Wang Leitao, Li Xianwei, Sheng Jingge, Bai Guanyu |
XJ Group Corporation, Xuchang, He’nan 461000 |
|
|
Abstract In respect to continualimprovement of distributed generation and flexible loadper- meability in active distribution network and increasingly higher demands of power consumers about power quality, a method that is used to restrain voltage deviation of active distribution network based on variable power and impedance is given in this paper. Positive deviation and negative deviation of load side bus voltage in active distribution network are analyzed by this method. When voltage positive deviation exceeds allowable value, load total power is changed through putting into flexible load which can restrain voltage deviation. If voltage positive deviation can not be restrained in allowable scope through flexible load, voltage positive deviation is restrained through further reducing output power of distributed generation. When voltagenegative deviation exceeds allowable value, voltage deviation is restrained through enlarging output power of distributed generation. If voltage negative deviation can not be restrained in allowable scope through output power of distributed generation, total impedance of transmission line is changed through putting into flexible line of controllable impedancewhich can restrain negative deviation of bus voltage. In order to verify proposed method, taking distributed generation, flexible load and flexible line those are connected to active distribution network for example, the Matlab/Simulink simulation model is built. Simulation results show that proposed method is feasible and effective.
|
Received: 06 November 2017
Published: 21 May 2018
|
|
|
|
Cite this article: |
Huang Lijun,Wang Leitao,Li Xianwei等. Research on restraint of bus voltage deviation in active distribution network based on variable power and impedance[J]. Electrical Engineering, 2018, 19(5): 26-32.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2018/V19/I5/26
|
[1] 严艺芬, 吴文宣, 张逸. 主动配电网规划关键问题研究[J]. 电气技术, 2016, 17(11): 1-5, 20. [2] 康鲁豫, 朱顺, 刘刚. 考虑电压稳定和网损的分布式电源最优选址和定容[J]. 电气技术, 2015, 16(2): 1-5, 22. [3] 蒲天骄, 刘克文, 李烨, 等. 基于多代理系统的主动配电网自治协同控制及其仿真[J]. 中国电机工程学报, 2015, 35(8): 1864-1874. [4] 张建华, 曾博, 张玉莹, 等. 主动配电网规划关键问题与研究展望[J]. 电工技术学报, 2014, 29(2): 13-23. [5] 刘海涛. 不同渗透率条件下的光伏电源并网对配电网电压偏差的影响[J]. 电气技术, 2016, 17(9): 47-50, 58. [6] 李瑞生, 翟登辉. 光伏DG接入配电网及微电网的过电压自动调节方法研究[J]. 电力系统保护与控制, 2015, 43(22): 62-68. [7] Wang Yu, Wang Benfei, So PL.A voltage regulation method using distributed energy storage systems in LV distribution networks[C]//2016 IEEE International Energy Conference (Energycon), 2016: 1-6. [8] Worthmann K, Kellett C M, Braun P A, et al.Distributed and decentralized control of residential energy systems incorporating battery storage[J]. IEEE Transactions on Smart Grid, 2015, 6(4): 1914-1923. [9] 蔡宇, 林今, 宋永华, 等. 基于模型预测控制的主动配电网电压控制[J]. 电工技术学报, 2015, 30(23): 42-49. [10] 徐弢, 李天楚, 郭凌旭, 等. 主动负荷参与配电网分布式智能电压控制[J]. 电力系统及其自动化学报, 2016, 28(1): 17-23. [11] Wang Pengfei, Liang D H, Yi Jialiang, et al.Integrating electrical energy storage into coordinated voltage control schemes for distribution networks[J]. IEEE Transactions on Smart Grid, 2014, 5(2): 1018-1032. [12] 张曦, 张宁, 龙飞, 等. 分布式电源接入配网对其静态电压稳定性影响多角度研究[J]. 电力系统保护与控制, 2017, 45(6): 120-125. [13] Bokhari A, Raza A, Diaz-Aguilo M, et al.Combined effect of CVR and DG penetration in the voltage profile of Low-Voltage secondary distribution networks[J]. IEEE Transactions on Power Delivery, 2016, 31(1): 286-293. [14] 付英杰, 汪沨, 陈春, 等. 考虑分布式电源的配电网电压控制新方法[J]. 电力系统及其自动化学报, 2015, 27(6): 26-31. [15] Sheng Hao, Chiang H D.CDFLOW: A practical Tool for tracing stationary behaviors of general distribution networks[J]. IEEE Transactions on Power Systems, 2014, 29(3): 1365-1371. [16] 杨胜春, 刘建涛, 姚建国, 等. 多时间尺度协调的柔性负荷互动响应调度模型与策略[J]. 中国电机工程学报, 2014, 34(22): 3664-3673. [17] 王璟, 蒋小亮, 杨卓, 等. 光伏集中并网电压约束下的准入容量与电压波动的评估方法[J]. 电网技术, 2015, 39(9): 2450-2457. [18] 肖浩, 裴玮, 邓卫, 等. 分布式电源对配电网电压的影响分析及其优化控制策略[J]. 电工技术学报, 2016, 31(S1): 203-213. [19] 汤雍, 张启蒙, 王刚, 等. 低压线路终端模块化智能型无功补偿装置的设计[J]. 电气技术, 2014, 15(7): 34-39. |
|
|
|