|
|
Multi-dimensional information fusion and state assessment of transformer based on improved D-S theory |
YUAN Yue1, CHEN Shi2, LIU Luyao1, GAO Zheng1, SHEN Tao1 |
1. China Yangtze Power Co., Ltd, Yichang, Hubei 443002; 2. College of Electrical Engineering, Sichuan University, Chengdu 610065 |
|
|
Abstract The correct evaluation of transformer operation state can greatly improve the reliability of power supply. In order to improve the accuracy of transformer condition assessment, considering the deficiency of single parameter selection in traditional transformer condition assessment method, a transformer condition parameter evaluation method based on improved evidence theory is proposed to realize multi-dimensional information fusion. In this method, the parameters of common transformer type test are selected as on-line monitoring indexes, and then the indexes are normalized. The improved D-S evidence theory is used to fuse the state indexes and build the evaluation model of transformer state parameters. The improved D-S evidence theory modifies the combination rules and effectively avoids the conflict evidence. The method can fully integrate a variety of information. The experimental results show that the accuracy of transformer condition assessment is greatly improved by this method.
|
Received: 21 September 2020
|
|
|
|
Cite this article: |
YUAN Yue,CHEN Shi,LIU Luyao等. Multi-dimensional information fusion and state assessment of transformer based on improved D-S theory[J]. Electrical Engineering, 2021, 22(6): 66-72.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I6/66
|
[1] 孙志鹏, 崔青, 张志磊, 等. 多分类支持向量机在电力变压器故障诊断中的应用[J]. 电气技术, 2019, 20(10): 25-28. [2] 李恩文, 王力农, 宋斌, 等. 基于改进模糊聚类算法的变压器油色谱分析[J]. 电工技术学报, 2018, 33(19): 4594-4602. [3] DEMPSTER A P.Upper and lower probabilities induced by a multi-valued mapping[J]. Annals of Mathematical Statistics, 1967, 38(2): 325-339. [4] 向阳辉, 张干清, 庞佑霞. 结合SVM和改进证据理论的多信息融合故障诊断[J]. 振动与冲击, 2015, 34(13): 71-77. [5] HUANG K, LARSSON E.Simultaneous information and power transfer for broadband wireless systems[J]. IEEE Transactions on Signal Processing, 2013, 61(23): 5972-5986. [6] 朱英凯. 基于改进分层可拓方法的电力变压器状态评估研究[D]. 南京: 东南大学, 2016. [7] GHAZZAI H, YAACOUB E, ALOUINI M S, et al.Optimized smart grid energy procurement for LTE networks using evolutionary algorithms[J]. IEEE Transactions on Vehicular Technology, 2014, 63(9): 4508-4519. [8] 彭剑, 罗安, 周柯, 等. 变压器故障诊断中信息融合技术的应用[J]. 高电压技术, 2007, 33(3): 144-147. [9] 苏鹏声, 王欢. 电力系统设备状态监测与故障诊断技术分析[J]. 电力系统自动化, 2003, 27(1): 61-65, 82. [10] 郑含博. 电力变压器状态评估及故障诊断方法研究[D]. 重庆: 重庆大学, 2012. [11] 刘海燕, 赵宗贵, 刘熹. D-S证据理论中冲突证据的合成方法[J]. 电子科技大学学报, 2008, 37(5): 701-704. [12] 邓焱. 基于多维信息融合的变压器状态评估与故障诊断方法研究[D]. 广州: 华南理工大学, 2018. [13] 韩崇昭, 朱洪艳, 段战胜. 多源信息融合[M]. 北京: 清华大学出版社, 2006. [14] 刘希亮, 陈桂明, 李方溪, 等. 基于改进证据理论的多传感器信息融合故障诊断[J]. 中国机械工程, 2014, 25(10): 1341-1345. [15] 刘哲席. 不确定性冲突信息的融合方法研究及在故障诊断中的应用[D]. 北京: 北京科技大学, 2015. |
|
|
|