|
|
Research on discharge characteristics of the equalizing ring under the influence of the adjacent suspension |
MA Yongfu1, BAO Zhenghong1, WANG Shengjie1, LI Simeng2, REN Jiyun1 |
1. State Grid Qinghai Electric Power Research Institute, Xining 810008; 2. Xi'an Jiaotong University, Xi'an 710049 |
|
|
Abstract During the on-site AC withstand voltage test, the influence of the suspension within the safe distance of the pressure equalizing ring on the top of the tested equipment is still unclear, it is important to carry out research on the discharge characteristics of the pressure equalizing ring under the influence of the adjacent suspension so as to improve the efficiency of the test significance. In this paper, a simulation test platform based on the power frequency test transformer is built first, and the maximum discharge distances under 12 working conditions of three voltage levels of 750kV, 330kV and 110kV are obtained through repeated tests. Secondly, a three-dimensional model is established, and the simulation calculation the maximum electric field in space, the surface potential of the suspended body and its distribution rules during the test are mastered, and the simulation model is universal by introducing the correction coefficient and its fitting calculation. Finally, it is considered that the voltage frequency of the on-site AC withstand voltage test is not 50Hz. At present, the correlation study between the air breakdown discharge characteristics and the test voltage frequency is carried out, and the relationship curve between the maximum discharge distance and the test frequency is obtained. The research results further improve the on-site withstand voltage test system, and provide technical support for such tests in the future.
|
Received: 05 May 2022
|
|
|
|
Cite this article: |
MA Yongfu,BAO Zhenghong,WANG Shengjie等. Research on discharge characteristics of the equalizing ring under the influence of the adjacent suspension[J]. Electrical Engineering, 2022, 23(10): 27-32.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2022/V23/I10/27
|
[1] 电气装置安装工程电气设备交接试验标准: GB 50150—2016[S] GB 50150—2016[S]. 北京: 中国计划出版社, 2016. [2] 侍海军, 张少炎, 王光前. 气体绝缘组合电器现场试验现状与发展[J]. 绝缘材料, 2004, 37(6): 44-47. [3] 温定筠, 张秀斌, 孙亚明, 等. GIS交流耐压试验原理与装置[J]. 电气技术, 2014, 15(10): 108-109. [4] 刘泽洪, 韩先才, 黄强, 等. 长距离、大容量特高压GIL现场交流耐压试验技术[J]. 高电压技术, 2020, 46(12): 4172-4181. [5] 侯中峰, 刘瞻, 任民, 等. 一种大型汽轮发电机交流耐压试验方法[J]. 电气技术, 2021, 22(6): 102-105. [6] 覃宗涛. 并联补偿电抗器在串联谐振耐压试验的应用[J]. 电气技术, 2020, 21(5): 95-97. [7] 杨照光, 张凯, 温定筠, 等. 超高压电气设备现场交流耐压试验用防风抗晕试验导线的研究与应用[J]. 高压电器, 2015, 51(5): 118-122. [8] 黄湛裕, 任重. 基于同频同相技术的500kV瓷柱式SF6断路器交流耐压试验分析[J]. 电气技术, 2017, 18(2): 111-116. [9] 陈忠. 串联谐振耐压试验的现场问题及解决方法[J]. 电网技术, 2006, 30(增刊1): 205-207. [10] 蒋頔. 高压电气设备交流耐压试验特殊情况及处理措施[J]. 工程技术研究, 2019, 4(20): 139-140. [11] 哈图. 高压电气设备交流耐压试验中的特殊情况研究[J]. 科技资讯, 2018, 16(33): 32-34. [12] 穆焜, 秦莹, 李勇. GIS现场耐压试验与相关设计问题分析[J]. 高压电器, 2017, 53(12): 236-240. |
|
|
|