|
|
Assessment method of transient stability for maintenance power system based on long short term memory neural network |
WANG Buhua1, ZHU Shaoxuan2, XIONG Haoqing1, XIE Yan2, LI Xiaomeng3 |
1. State Grid He'nan Electric Power Company, Zhengzhou 450052; 2. China Electric Power Research Institute, Beijing 100192; 3. Electric Power Research Institute of State Grid He'nan Electric Power Company, Zhengzhou 450052 |
|
|
Abstract With the expansion of power grid scale and the increase of power components, the maintenance methods of power system become more and more complex. It is difficult to evaluate the transient stability risk of power grid under massive maintenance only by traditional methods. To solve this problem, a risk assessment method of transient stability in maintenance power network based on long short term memory (LSTM) neural network is proposed. Firstly, the unified coding method of power system maintenance mode is proposed, so that the computer can quickly and accurately identify the operation state of power grid under various maintenance modes. Then, a long short term memory neural network is established and trained based on a large number of fault samples of the power grid under maintenance. After that, the accurate evaluation of the power grid transient stability under different maintenance modes is realized. Finally, a regional power grid in Central China is taken as an example to verify the accuracy of the proposed method.
|
Received: 29 November 2022
|
|
|
|
Cite this article: |
WANG Buhua,ZHU Shaoxuan,XIONG Haoqing等. Assessment method of transient stability for maintenance power system based on long short term memory neural network[J]. Electrical Engineering, 2023, 24(1): 29-35.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I1/29
|
[1] 刘晔, 沈沉. 交直流混联系统的能量函数构造方法综述与探究[J]. 中国电机工程学报, 2022, 42(8): 2842-2854. [2] 张晓华, 徐伟, 吴峰, 等. 交直流混联电网连锁故障特征事件智能溯源及预测方法[J]. 电力系统自动化, 2021, 45(10):17-24. [3] 郭小颖, 唐俊杰, 舒铜, 等. 基于改进模态分析法的柔性多端交直流混联系统静态电压稳定性评估[J]. 电工技术学报, 2021, 36(17): 3741-3752. [4] 苏福, 杨松浩, 王怀远, 等. 电力系统暂态稳定时域仿真快速终止算法研究[J]. 中国电机工程学报, 2017, 37(15): 4372-4378. [5] 汪芳宗, 陈德树, 何仰赞. 大规模电力系统暂态稳定性实时仿真及快速判断[J]. 中国电机工程学报, 1993, 13(6): 13-19. [6] 潘明帅, 汪芳宗, 宋墩文, 等. 基于广义向后差分方法的电力系统暂态稳定性快速数值计算方法[J]. 电力系统保护与控制, 2018, 46(1): 9-15. [7] 吴滋坤, 张俊勃, 黄钦雄, 等. 基于非诚实牛顿法和雅可比迭代的电力系统时域计算隐式梯形积分交替求解算法[J]. 中国电机工程学报, 2022, 42(8): 2864-2873. [8] 王长江, 姜涛, 陈厚合, 等. 基于相位校正李雅普诺夫指数的电力系统暂态电压稳定评估[J]. 电工技术学报, 2021, 36(15): 3221-3236. [9] PAI M A, SAUER P W.Stability analysis of power systems by Lyapunov's direct method[J]. IEEE Control Systems Magazine, 1989, 9(1): 23-27. [10] 陈厚合, 王长江, 姜涛, 等. 基于端口能量的含VSC-HVDC的交直流混合系统暂态稳定评估[J]. 电工技术学报, 2018, 33(3): 498-511. [11] 刘志远, 王杰, 刘瑞麟. 基于Noether定理的多机系统能量函数构造方法[J]. 电网技术, 2020, 44(3): 1034-1040. [12] 朱劭璇, 王彤, 王增平, 等. 考虑主导不稳定平衡点变化的电力系统暂态稳定切机控制策略[J]. 电力系统保护与控制, 2021, 49(5): 20-28. [13] 杜兆斌, 黄昌树, 陈智颖, 等. 基于主导不稳定平衡点法的暂态电压稳定性研究[J]. 电测与仪表, 2022, 59(12): 64-70. [14] 傅书逖. 势能界面法(PEBS)暂态稳定分析的综述及展望[J]. 电力系统自动化, 1998, 22(9): 16-18. [15] 黄天罡, 薛禹胜, 林振智, 等. 动态EEAC的自适应分段映射[J]. 电力系统自动化, 2018, 42(21): 21-27. [16] XUE Y, VAN C T, RIBBENS-PAVELLA M.Extended equal area criterion justifications, generalizations, applications[J]. IEEE Transactions on Power Systems, 1989, 4(1): 44-52. [17] 陈轩伟. 基于BP-QR模型的负荷区间预测[J]. 电气技术, 2022, 23(4): 14-17, 24. [18] 冯双, 崔昊, 陈佳宁, 等. 人工智能在电力系统宽频振荡中的应用与挑战[J]. 中国电机工程学报, 2021, 41(23): 7889-7905. [19] 宓登凯, 王彤, 相禹维, 等. 基于Elastic Net的暂态稳定裕度在线评估[J]. 电网技术, 2020, 44(1): 19-26. [20] 陈振祥, 林培杰, 程树英, 等. 基于K-means++和混合深度学习的光伏功率预测[J]. 电气技术, 2021, 22(9): 7-13, 33. [21] AZMAN S K, ISBEIH Y, MOURSI M, et al.A unified online deep learning prediction model for small signal and transient stability[J]. IEEE Transactions on Power Systems, 2020, 35(6): 4585-4598. [22] ZHU Lipeng, LUO Yonghong.Deep feedback learning based predictive control for power system under- voltage load shedding[J]. IEEE Transactions on Power Systems, 2021, 36(4): 3349-3361. [23] 臧国强, 刘晓莉, 徐颖菲, 等. 深度学习在电力设备缺陷识别中的应用进展[J]. 电气技术, 2022, 23(6): 1-7. [24] 卢锦玲, 郭鲁豫. 基于改进深度残差收缩网络的电力系统暂态稳定评估[J]. 电工技术学报, 2021, 36(11): 2233-2244. [25] 安军, 艾士琪, 刘道伟, 等. 基于短时受扰轨迹的电力系统暂态稳定评估方法[J]. 电网技术, 2019, 43(5): 1690-1697. [26] 李保罗, 孙华东, 张恒旭, 等. 基于两阶段迁移学习的电力系统暂态稳定评估框架[J]. 电力系统自动化, 2022, 46(17): 176-185. [27] 时纯, 刘君, 梁卓航, 等. 基于GAN和多通道CNN的电力系统暂态稳定评估[J]. 电网技术, 2022, 46(8): 3191-3202. |
|
|
|