|
|
Dynamic stability assessment of power system based on image feature filtering and fusion network |
LU Yufei, LIN Jianxin |
Key Laboratory of New Energy Generation and Power Conversion (College of Electrical Engineering and Automation, Fuzhou University), Fuzhou 350108 |
|
|
Abstract During the feature extraction process of traditional neural networks, some shallow information may be lost, which leads to a decrease in the accuracy of model evaluation. In order to fully utilize the feature information of each layer, in this paper, the feature fusion module is embedded in traditional neural networks. An image feature filtering and fusion network is proposed. The network first fuses the features of each layer through linear and nonlinear changes to improve the expression of effective features. Then, the feature fusion weights are quantified based on Pearson correlation. Finally, weighted fusion is performed on the features of each layer based on the feature fusion weights. The simulation experiments are carried out in IEEE 39-bus system and IEEE 145-bus system. The results show that the proposed network has better evaluation performance compared to traditional neural networks.
|
Received: 11 October 2023
|
|
|
|
Cite this article: |
LU Yufei,LIN Jianxin. Dynamic stability assessment of power system based on image feature filtering and fusion network[J]. Electrical Engineering, 2023, 24(12): 1-6.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I12/1
|
[1] 杨浩, 伍柏臻, 刘铖, 等. 基于暂态关键特征逻辑推理的复杂电网响应驱动暂态稳定性判别[J/OL]. 电工技术学报: 1-13[2023-10-10]. https://doi.org/10. 19595/j.cnki.1000-6753.tces.230857. [2] 王步华, 朱劭璇, 熊浩清, 等. 基于长短期记忆神经网络的检修态电网暂态稳定评估方法[J]. 电气技术, 2023, 24(1): 29-35, 43. [3] 赵恺, 石立宝. 基于改进一维卷积神经网络的电力系统暂态稳定评估[J]. 电网技术, 2021, 45(8): 2945-2957. [4] 王怀远, 陈启凡. 基于代价敏感堆叠变分自动编码器的暂态稳定评估方法[J]. 中国电机工程学报, 2020, 40(7): 2213-2220. [5] 郑恒峰, 刘道伟, 李柏青, 等. 基于电压相量轨迹几何特征的电网节点时空关联特性评估[J]. 电网技术, 2020, 44(1): 9-18. [6] 张亮, 安军, 周毅博. 基于时间卷积和图注意力网络的电力系统暂态稳定评估[J]. 电力系统自动化, 2023, 47(7): 114-122. [7] ZHU Lipeng, HILL D J, LU Chao.Hierarchical deep learning machine for power system online transient stability prediction[J]. IEEE Transactions on Power Systems, 2020, 35(3): 2399-2411. [8] 庄颖睿, 肖谭南, 程林, 等. 基于时空图卷积网络的电力系统暂态稳定评估[J]. 电力系统自动化, 2022, 46(11): 11-18. [9] 刘熙鹏, 罗庆全, 余涛, 等. 基于多尺度特征融合的负荷辨识及其可解释交互增强方法[J/OL]. 电力系统自动化: 1-18[2023-10-10]. http://kns.cnki.net/kcms/detail/32.1180.TP.20230817.1058.002.html. [10] 吴刘宸, 张辉, 刘嘉轩, 等. 基于区域注意力机制和多尺度特征融合的输电线路螺栓缺陷检测[J]. 计算机科学, 2023, 50(增刊1): 438-444. [11] 陈奎, 刘晓, 贾立娇, 等. 基于轻量化网络与增强多尺度特征融合的绝缘子缺陷检测[J/OL]. 高电压技术: 1-14[2023-10-10]. DOI: 10.13336/j.1003-6520.hve. 20221652. [12] 刘伟, 王凯. 基于通道选择多尺度融合深度残差网络的电能质量扰动识别[J]. 电气技术, 2023, 24(5): 11-15, 22. [13] 陈光宇, 袁文辉, 徐晓春, 等. 基于残差图卷积深度网络的电网无功储备需求快速计算方法[J]. 电工技术学报, 2023, 38(17): 4683-4700. [14] 赵洪山, 孙京杰, 彭轶灏, 等. 基于多尺度窗口和区域注意力残差网络的无线电力终端身份识别方法[J]. 电工技术学报, 2023, 38(1): 107-116. [15] 陈乔松, 陈鹏昌, 李佩, 等. 基于多尺度特征选择与融合的目标检测方法[J]. 重庆邮电大学学报(自然科学版), 2023, 35(2): 227-234. [16] 李可佳, 胡学先, 陈越, 等. 基于主成分分析和函数机制的差分隐私线性回归算法[J]. 计算机科学, 2023, 50(8): 342-351. [17] 刘语忱, 闫群民, 郭阳, 等. 基于完备局部均值分解和相关分析的光伏发电侧电-氢混合储能优化配置[J]. 电气技术, 2022, 23(11): 21-29. |
|
|
|