|
|
Research on sensorless control of permanent magnet synchronous motor based on model predictive method based phase locked loop |
YU Linxin1, YUAN Xin1, DING Guohua1, SHENG Xiaowei2, FEI Lianyue1 |
1. School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159; 2. School of Mechatronics and Information Technology, Wuxi Open University, Wuxi, Jiangsu 214011 |
|
|
Abstract Considering the problems of slow response speed and low tracking accuracy in estimating the rotor position of permanent magnet synchronous motor (PMSM) using traditional phase locked loop (PLL), a rotor position estimation method based on model prediction-PLL (MP-PLL) is proposed. First, the principle of PMSM model predictive control is analyzed. The traditional model predictive control method is combined with PLL, and an MP-PLL structure is proposed. On this basis, the rotor position is estimated by combining the discrete position search algorithm, and the discrete position search is efficiently optimized, which greatly improves the performance of MP-PLL in a wide speed range, improving its robustness and rotor position estimation accuracy. Finally, simulation and experimental verification are performed, and the results show that the proposed MP-PLL has better response performance than the traditional PLL under changes in PMSM parameters and can estimate the rotor position quickly and accurately.
|
Received: 18 February 2024
|
|
|
|
Cite this article: |
YU Linxin,YUAN Xin,DING Guohua等. Research on sensorless control of permanent magnet synchronous motor based on model predictive method based phase locked loop[J]. Electrical Engineering, 2024, 25(8): 18-26.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I8/18
|
[1] XU Dianguo, WANG Bo, ZHANG Guoqiang, et al.A review of sensorless control methods for AC motor drives[J]. CES Transactions on Electrical Machines and Systems, 2018, 2(1): 104-115. [2] BENEVIERI A, CARBONE L, COSSO S, et al.Surface permanent magnet synchronous motors’ passive sensorless control: a review[J]. Energies, 2022, 15(20): 7747. [3] WANG Gaolin, VALLA M, SOLSONA J.Position sensorless permanent magnet synchronous machine drives-a review[J]. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5830-5842. [4] 曹春堂, 兰志勇, 沈凡享. 永磁同步电机无位置传感器控制系统中初始位置角检测综述[J]. 电气技术, 2020, 21(6): 1-6. [5] 王爽, 曹栋逸, 杨影, 等. 正负高频脉冲电压注入的永磁同步电机无位置传感器控制[J]. 电工技术学报, 2020, 35(增刊1): 164-171. [6] 赵文祥, 刘桓, 陶涛, 等. 基于虚拟信号和高频脉振信号注入的无位置传感器内置式永磁同步电机MTPA控制[J]. 电工技术学报, 2021, 36(24): 5092-5100. [7] PRAVICA L, SUMINA D, BARISA T, et al.Flying start of a permanent magnet wind power generator based on a discontinuous converter operation mode and a phase-locked loop[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1097-1106. [8] 张蕾. 一种适用于谐波电网环境的新型锁相环技术[J]. 电气技术, 2021, 22(8): 25-28. [9] ABDERRAHMANE K, YASSINE B, CHRIFI- ALAOUI L.Sensorless direct speed control (DSC) of VR synchronous motor using PLL technique[C]//2020 International Conference on Control, Automation and Diagnosis (ICCAD), Paris, Franch, 2020: 1-7. [10] ISHIKAWA Y, HASEGAWA M.Improvement of position sensorless control performance for high speed PMSM with all-pass filters[C]//2019 IEEE Inter- national Conference on Industrial Technology (ICIT), Melbourne, VIC, Australia, 2019: 274-279. [11] 吴翔, 陈硕, 李佳, 等. 基于改进正交锁相环的永磁同步电机无位置传感器控制[J]. 电工技术学报, 2024, 39(2): 475-486. [12] 刘计龙, 肖飞, 麦志勤, 等. IF控制结合滑模观测器的永磁同步电机无位置传感器复合控制策略[J]. 电工技术学报, 2018, 33(4): 919-929. [13] 陈文汉, 孙丹, 王铭泽. 断相故障下开绕组永磁同步电机模型预测控制容错控制策略研究[J]. 电工技术学报, 2021, 36(1): 77-86. [14] 林旗斌. 基于模型预测控制的含压缩空气储能微能网多时间尺度优化调度方法[J]. 电气技术, 2023, 24(7): 11-19. [15] 王治国, 郑泽东, 李永东, 等. 交流电机模型预测控制综述[J]. 电机与控制学报, 2022, 26(11): 14-30. [16] 陈卓易, 屈稳太, 邱建琪. 一种开关频率可控的有限集模型预测控制[J]. 电工技术学报, 2022, 37(16): 4134-4142. [17] CHEN Shuo, DING Wen, WU Xiang, et al.Finite position set-phase-locked loop with low computational burden for sensorless control of PMSM drives[J]. IEEE Transactions on Industrial Electronics, 2023, 70(9): 9672-9676. [18] PENG Jingyao, YAO Ming.Overview of predictive control technology for permanent magnet synchronous motor systems[J]. Applied Sciences, 2023, 13(10): 6255. |
|
|
|