|
|
Magnetic memory based fracture detection technology for steel core of tension clamps |
TENG Yulin1, LÜ Yanting2, LI Jun2, XIE Jinpeng1 |
1. Gansu Electric Power Research Institute Technology Center Co., Ltd, Lanzhou 730070; 2. State Grid Gansu Electric Power Company Electric Power Science Research Institute, Lanzhou 730070 |
|
|
Abstract This article introduces a magnetic memory based detection method for the internal steel core stress and fracture defects of compression type tension clamps for overhead transmission lines, which are prone to stress concentration and internal steel core fracture during compression construction. By conducting metal magnetic memory testing experiments on three situations: non fracture, partial fracture, and complete fracture of the internal steel core of the tension clamp, the relationship between the magnetic memory signal curve and the damage to the internal steel core of the tension clamp is studied, and the magnetic memory testing results are compared and analyzed using X-ray testing methods. The results show that magnetic memory detection technology can effectively detect the damage and defects of the steel core inside the compression area of the tension clamp. The magnitude of the magnetic leakage field in the tension clamp is related to the degree of internal steel core damage. The more severe the steel core damage, the greater the value of the magnetic leakage field signal detected by magnetic memory based detection method.
|
Received: 23 April 2024
|
|
|
|
[1] 肖龙, 李泰, 李艳梅, 等. 高压直流输电线路故障模拟与重启动策略[J]. 电气技术, 2023, 24(8): 70-73. [2] 李林, 王永平, 黄志岭, 等. 三峡—常州±500kV直流输电工程控制保护系统改造[J]. 电气技术, 2022, 23(12): 38-43. [3] 白国岩, 李春宝, 孟繁丞, 等. 多端柔性直流输电系统的自适应下垂控制策略研究[J]. 电气技术, 2022, 23(5): 1-8. [4] 沈天骄, 仲浩, 王永平, 等. 自主可控特高压直流控制保护系统设计与研发[J]. 电气技术, 2022, 23(3): 50-56. [5] 董晓虎, 程绳, 涂天成, 等. 大截面钢芯铝绞线导线压接拉断仿真分析[J]. 电子测量技术, 2021, 44(4): 62-69. [6] 王志旭. 输电线路耐张线夹压接关键工艺参数研究[D]. 北京: 华北电力大学, 2022. [7] 刘振亚. 特高压交直流电网[M]. 北京: 中国电力出版社, 2013. [8] 张睿哲, 周恺, 蔡瀛淼, 等. 基于脉冲反射法的耐张线夹压接质量超声检测技术研究[J]. 电测与仪表, 2023, 60(3): 153-156. [9] 杨迎春, 焦宗寒, 代克顺. 输电线路耐张线夹断裂原因[J]. 理化检验-物理分册, 2021, 57(8): 54-57. [10] 李志川, 兰生, 魏柯. 基于MRSVD-GRU的混合三端特高压直流输电线路单极接地故障定位方法[J]. 电气技术, 2023, 24(3): 1-8. [11] 何喜梅, 王志惠, 云峰, 等. 750 kV导线断裂原因分析及预防措施[J]. 热加工工艺, 2018, 47(4): 257-259. [12] 刘光辉, 杨晓辉, 叶中飞, 等. 输电线路耐张线夹模锻压接质量分析及实验研究[J]. 热加工工艺, 2023, 52(3): 106-111. [13] 马阳阳, 李永建, 孙鹤, 等. 基于深度置信网络算法的面向铁磁材料旋转磁滞损耗的矢量磁滞模型[J]. 电工技术学报, 2023, 38(15): 4063-4075. [14] 黄文美, 郭萍萍, 郭万里, 等. 直流偏置对磁致伸缩材料高频动态损耗及磁特性的影响分析[J]. 电工技术学报, 2022, 37(22): 5765-5775. [15] HUANG Haihon, QIAN Zengchun, LIU Zhifeng.Metal magnetic memory technique and its applications in remanufacturing[M]. Singpore: Springer, 2021. [16] DUBOV A A.A study of metal properties using the method of magnetic memory[J]. Metal Science and Heat Treatment, 1997, 39(9): 401-402. [17] 邢海燕, 段成凯, 刘长皓, 等. 金属磁记忆检测的关键技术研究现状与展望[J]. 压力容器, 2024, 41(1): 70-82. [18] 苏三庆, 邓瑞泽, 王威, 等. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 183-190. [19] 王振, 张艳丽, 龚园, 等. 机械应力下无取向电工钢片磁致伸缩特性研究[J]. 电工技术学报, 2023, 38(21): 5682-5690. |
|
|
|