|
|
Study on the electric field distribution characteristics of a 220kV double-circuit transmission line on the same tower |
LI Shan1, ZHANG Yuan1, YANG Dingqian1, HU Siyu2, HOU Tianyu2 |
1. State Grid Xinjiang Electric Power Research Institute, Urumqi 830013; 2. China University of Geosciences (Beijing), Beijing 100083 |
|
|
Abstract With the rapid development of high voltage AC transmission technology in China, high voltage AC grids have become the main framework of the national grid. The power frequency electric field of high voltage transmission lines inevitably affects human activities near the ground, making it necessary to calculate the electromagnetic fields generated by transmission lines. This paper takes a 220kV double-circuit transmission line on the same tower as the research object. Using COMSOL finite element simulation software, it simulates the electric field around the tower and conductors under the drum-shaped arrangement of the double-circuit line on the same tower. The study analyzes the effects of phase sequence configuration, tower structure, conductor thickness and splitting distance selection, and conductor height above the ground on the electric field distribution. The results show that reverse phase sequence arrangement can significantly reduce the ground electric field intensity, while conductor thickness has a smaller impact. Reasonable splitting distance helps control the electric field intensity, and the height of the transmission line above the ground is the most critical factor affecting the ground electric field. These findings provide reference for optimizing the electric field of 220kV transmission lines, facilitating the enhancement of environmental compatibility and safety of the system.
|
Received: 14 May 2024
|
|
|
|
Cite this article: |
LI Shan,ZHANG Yuan,YANG Dingqian等. Study on the electric field distribution characteristics of a 220kV double-circuit transmission line on the same tower[J]. Electrical Engineering, 2024, 25(10): 1-7.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I10/1
|
[1] 朱道俊, 张文锋, 李国彬. 基于熵权和TOPSIS法的山区35kV架空线路雷击风险评估[J]. 电气技术, 2022, 23(8): 23-30. [2] LEMAN J T, OLSEN R G.Fourier enhanced charge simulation method for electrostatic analysis of overhead transmission lines[J]. IEEE Transactions on Power Delivery, 2022, 37(2): 1078-1087. [3] 邹岸新, 李永明, 王洋洋, 等. 表面电荷法在复杂地势下超高压输电线路的工频电场计算[J]. 电工电能新技术, 2017, 36(3): 51-57. [4] 肖前波, 廖峥, 刘刚旭, 等. 输电线路矢量电场测供一体传感器及电压反演方法[J]. 电气技术, 2024, 25(4): 24-31. [5] ZHANG Jun, TAN Wuguang, LI Jie, et al.Overhead line electric field on the impact of grounding device corrosion and corrosion prevention strategies[C]//2023 6th Asia Conference on Energy and Electrical Engineering (ACEEE), Chengdu, China, 2023: 183-187. [6] EL DEIN A Z. Calculation of the electric field around the tower of the overhead transmission lines[J]. IEEE Transactions on Power Delivery, 2014, 29(2): 899-907. [7] 张迁. 高压直流输电铁塔附近三维合成电场的计算与特性研究[D]. 北京: 华北电力大学, 2019. [8] 杨勇, 谢莉. 平行和交叉跨越直流模拟试验线段三维电场的一种计算方法[J]. 电气技术, 2021, 22(1): 14-18. [9] WANG Ru, TIAN Jin, WU Fei, et al.PSO/GA combined with charge simulation method for the electric field under transmission lines in 3D calcu- lation model[J]. Electronics, 2019, 8(10): 1140. [10] 胡琴, 舒立春, 蒋兴良. 优化模拟电荷法计算特高压直流导线表面电场(英文)[J]. 高电压技术, 2008, 34(12): 2547-2551. [11] 倪洪启, 吴宝胜, 宋荣发, 等. 基于有限元法的发电机护环液压胀形数值分析[J]. 电气技术, 2023, 24(7): 34-38, 46. [12] 张东东, 罗威, 黄宵宁, 等. 染污绝缘子放电空间电场时频特性研究[J]. 电工技术学报, 2024, 39(9): 2873-2886. [13] 仲彬. 超高压交流输电杆塔工频电磁辐射环境影响仿真研究[D]. 徐州: 中国矿业大学, 2021. [14] 曾怡. 冲击电压下输电线路杆塔雷击暂态特性仿真与试验研究[D]. 成都: 西南交通大学, 2020. [15] 李本良, 李显鑫, 侯树政, 等. 高压输电线路共享杆塔的5G通信设备表面电场计算方法[J]. 南方电网技术, 2021, 15(10): 65-71. [16] 刘鹏, 吴泽华, 朱思佳, 等. 缺陷对交流1100kV GIL三支柱绝缘子电场分布影响的仿真[J]. 电工技术学报, 2022, 37(2): 469-478. [17] ZONG Shiqi, JIAO Chaoqun, ZHAO Zhibin, et al.Research on electromagnetic scattering characteristics of transmission tower with different tower types in short wave band based on the characteristic mode theory[J]. IEEE Access, 2023, 11: 77429-77440. [18] WAN Shuai, LIU Zihao, CAO Wei, et al.Influence of UHV DC transmission line arrester on electric field distribution of composite insulator[C]//2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 2020. [19] 朱轲, 邱雪梅, 宁鑫, 等. 220 kV复合横担输电杆塔电场分布及均压优化分析[J]. 电力科学与技术学报, 2019, 34(3): 217-222. [20] 王磊, 唐盼, 杨芳, 等. 35kV线路带电作业电场仿真分析与防护[J]. 南方电网技术, 2021, 15(3): 92-98, 112. [21] 张国锋, 惠康, 务孔永, 等. 石墨基柔性接地装置在输电线路中的适用性研究[J]. 电气技术, 2021, 22(10): 93-97, 103. [22] 杜丽, 陆军, 潘明, 等. 局部放电的静电场仿真定量分析[J]. 电气技术, 2023, 24(5): 41-45. [23] 黄瑞莹, 黄道春, 周军, 等. ±400kV直流输电线路杆塔涉鸟故障风险区域研究[J]. 电工电能新技术, 2017, 36(2): 68-73. [24] 梁利辉, 赵志刚, 闫敏, 等. 1000 kV输电线路不同检修项目带电作业防护研究[J]. 自动化技术与应用, 2023, 42(6): 155-159. |
|
|
|