|
|
Optimization of collector line topology and marine cable cross-section in offshore wind farms |
SHEN Dingfa, LIU Hong |
Shanghai Investigation and Design Research Institute Co., Ltd, Shanghai 200434 |
|
|
Abstract According to the wind speed distribution and the output characteristics of the wind turbine, the output probability density function of the wind turbine is derived. The three-state reliability model of marine cable is proposed, and the calculation method of expected energy not supplied of chain network and quasi-ring network is proposed. On this basis, the optimization model of collector system topology and cross-section of marine cable is established. Case analysis shows that the topology of the collector line is affected by the layout of wind turbines and booster stations, the unit price of marine cables, the electricity on-grid price and the discount rate of capital. For large offshore wind farms, the optimized collector line topology is generally a combination of chain structure and quasi-ring structure. The optimization method provided in this paper can provide reference for the optimization design of collection lines in large offshore wind farms.
|
Received: 13 May 2024
|
|
|
|
Cite this article: |
SHEN Dingfa,LIU Hong. Optimization of collector line topology and marine cable cross-section in offshore wind farms[J]. Electrical Engineering, 2024, 25(10): 21-29.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I10/21
|
[1] 中商产业研究院. 2023年中国海上风电行业市场前景及投资研究报告[R/OL]. [2024-08-06]. https://m.askci.com/news/chanye/20230915/161419269476565970054066.shtml. [2] 吴姗姗, 王双, 彭洪兵, 等. 我国海上风电产业发展思路与对策建议[J]. 经济纵横, 2017(1): 68-73. [3] 赵靓. 2030年全球海上风电市场展望[J]. 风能, 2021(10): 40-43. [4] 朱黎. 海上风电为可再生能源发展的新领域[J]. 新能源科技, 2021(12): 2-3. [5] 李雪, 李佳奇, 张儒峰, 等. 计及风电出力相关性和条件价值风险的电力系统概率可用输电能力评估[J]. 电工技术学报, 2023, 38(15): 4162-4177. [6] 孙冠群. 海上风电场全直流汇集经济性研究[J]. 电气技术, 2023, 24(5): 1-5. [7] 张萍, 陆霞, 孟庆鹤. 基于多策略麻雀搜索算法的微电网容量优化配置[J]. 电气技术, 2023, 24(1): 1-9. [8] 王碧阳, 王锡凡, 王秀丽, 等. 考虑集电系统的风电场可靠性评估[J]. 中国电机工程学报, 2015, 35(9): 2105-2111. [9] SULAEMAN S, BENIDRIS M, MITRA J, et al.A wind farm reliability model considering both wind variability and turbine forced outages[J]. IEEE Transactions on Sustainable Energy, 2017, 8(2): 629-637. [10] 韩伟, 李峰, 王轩, 等. 考虑尾流效应和集电系统元件故障的风电场可靠性建模[J]. 电测与仪表, 2023, 60(4): 126-132. [11] 罗魁, 郭剑波, 马士聪, 等. 海上风电并网可靠性分析及提升关键技术综述[J]. 电网技术, 2022, 46(10): 3691-3703. [12] WANG Long, WU Jianghai, WANG Tongguang, et al.An optimization method based on random fork tree coding for the electrical networks of offshore wind farms[J]. Renewable Energy, 2020, 147: 1340-1351. [13] PÉREZ-RÚA J A, STOLPE M, CUTULULIS N A. Integrated global optimization model for electrical cables in offshore wind farms[J]. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1965-1974. [14] PÉREZ-RÚA J A, STOLPE M, DAS K, et al. Global optimization of offshore wind farm collection systems[J]. IEEE Transactions on Power Systems, 2020, 35(3): 2256-2267. [15] 王钤, 杨苹, 赵卓立, 等. 基于链形拓扑的海上风电场集电系统可靠性评估[J]. 可再生能源, 2014, 32(10): 1463-1467. [16] 魏书荣, 樊潇, 黄苏融, 等. 海上风电场环形结构集电系统可用率等值计算方法[J]. 河海大学学报(自然科学版), 2016, 44(1): 89-94. [17] 陈献慧, 王冰, 邓红峰, 等. 海上风电场环形拓扑结构集电系统开关配置分析[J]. 可再生能源, 2019, 37(2): 205-211. [18] 孙瑞娟, ABEYNAYAKE G, 穆清, 等. 基于通用生成函数的海上风电集电系统可靠性与经济性评估[J]. 电力系统自动化, 2022, 46(5): 159-173. [19] PÉREZ-RÚA J A, LUMBRERAS S, RAMOS A, et al. Reliability based topology optimization for offshore wind farm collection system[J]. Wind Energy, 2022, 25(1): 52-70. [20] 王毅, 朱晓荣, 赵书强. 风力发电系统的建模与仿真[M]. 北京: 中国水力水电出版社, 2015. [21] ANDERS G, VACCARO A.电力系统可靠性新技术[M]. 周孝信, 李柏青, 沈力, 等译. 北京: 中国电力出版社, 2014. [22] 李芃达, 李东东. 海上风电场集电系统拓扑结构优化研究[J]. 电力系统保护与控制, 2016, 44(18): 102-107. |
|
|
|