电气技术  2017, Vol. 18 Issue (1): 26-29    DOI:
研究与开发 |
基于神经网络的短期电力负荷预测仿真研究
陈亚1, 李萍2
1. 宁夏大学物理与电子电气工程学院,银川 750021;
2. 宁夏沙漠信息智能感知重点实验室,银川 750021
Research on Simulation of Short-term Power Load Forecasting based on Neural Network
Chen Ya1, Li Ping2
1. School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021;
2. Ningxia Key Laboratory of Intelligent Sensing for Desert Information, Yinchuan 750021
全文: PDF (7293 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为了提高短期电力负荷预测精度,分别建立了基于BP神经网络和Elman神经网络的短期负荷预测模型。采用附加动量法优化BP神经网络以提高其收敛速度;针对Elman神经网络易陷入局部极值的缺点,改进其激励函数并采用LM算法优化学习算法。Matlab仿真结果表明,改进后的Elman神经网络模型比BP神经网络模型的预测精度高,收敛速度快,更适合处理动态问题。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈亚
李萍
关键词 BP神经网络Elman神经网络短期电力负荷预测精度    
Abstract:Short-term load forecasting models based on BP neural network and Elman neural network are established in order to improve the accuracy of short-term power load forecasting.In order to improve the convergence rate, the BP neural network is optimized by the additional momentum method. For Elman neural network is easy to fall into the local extremum, so improve the incentive function and use the LM algorithm to optimize the learning algorithm.Matlab simulation results show that the improved Elman neural network model is better than the BP neural network model with high accuracy and fast convergence speed, which is more suitable for dynamic problems.
Key wordsBP neural network    Elman neural network    short-term electric load    prediction accuracy   
     出版日期: 2017-01-20
基金资助:宁夏自然科学基金资助项目(NZ15013)
作者简介: 陈亚(1992-),女,硕士研究生,主要从事电力系统及通信技术研究工作
引用本文:   
陈亚, 李萍. 基于神经网络的短期电力负荷预测仿真研究[J]. 电气技术, 2017, 18(1): 26-29. Chen Ya, Li Ping. Research on Simulation of Short-term Power Load Forecasting based on Neural Network. Electrical Engineering, 2017, 18(1): 26-29.
链接本文:  
https://dqjs.cesmedia.cn/CN/Y2017/V18/I1/26