电气技术  2020, Vol. 21 Issue (10): 93-102    DOI:
电气设备检修与故障诊断 |
以提升小波包系数熵为特征值的隐马尔科夫电缆局部放电识别
钱帅伟1, 彭彦军1, 周泽民1, 陈健禧1, 唐明2
1.广西电网有限责任公司桂林供电局,桂林 541002;
2.珠海华网科技有限责任公司,广东 珠海 510382
Partial discharge pattern recognition using hidden Markov models based on the entropy lifting wavelet coefficients
Qian Shuaiwei1, Peng Yanjun1, Zhou Zemin1, Chen Jianxi1, Tang Ming2
1. Guangxi Power Grid Co., Ltd, Guilin Power Supply Bureau, Guilin 541002;
2. Zhuhai Huanet Technology Co., Ltd, Zhuhai, Guangdong 510382
全文: PDF (41365 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对电缆局部放电检测,本文提出以提升小波包系数熵结合隐马尔科夫模型的识别方法。基于提升小波包与信息熵理论,提取放电信号的小波能量熵与系数熵作为特征量,将提取的特征向量输入隐马尔科夫模型进行训练,得到最优训练模型。在电缆本体上进行人工模拟缺陷,采用本文算法、传统小波系数熵、BP神经网络分别对不同放电模型产生的放电进行识别测试,并使用该方法对现场数据进行分析。结果表明:本文方法在识别准确率以及算法执行效率上,均优于传统小波以及BP神经网络。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
钱帅伟
彭彦军
周泽民
陈健禧
唐明
关键词 提升小波包隐马尔科夫局部放电小波系数熵    
Abstract:For the detection of partial discharge in cables, this paper presents a recognition method based on lifting wavelet packet coefficient entropy and hidden Markov model. Based on the theory of lifting wavelet packet and information entropy, the wavelet energy spectrum entropy and coefficient entropy of discharge signal are extracted as eigenvalues. The extracted eigenvectors are input into the hidden Markov model for training, and the optimal training model is obtained. Artificial simulation of defects on cable body, discharges generated by different discharge models are identified and tested by using the proposed algorithm, traditional wavelet coefficient entropy and BP neural network respectively. The results show that the method is superior to the traditional wavelet and BP neural network in recognition accuracy and algorithm execution efficiency.
Key wordslifting wavelet packet    hidden Markov    partial discharge    wavelet coefficient entropy   
收稿日期: 2020-03-09     
作者简介: 钱帅伟(1983-),工程师,主要从事生产技术管理工作。
引用本文:   
钱帅伟, 彭彦军, 周泽民, 陈健禧, 唐明. 以提升小波包系数熵为特征值的隐马尔科夫电缆局部放电识别[J]. 电气技术, 2020, 21(10): 93-102. Qian Shuaiwei, Peng Yanjun, Zhou Zemin, Chen Jianxi, Tang Ming. Partial discharge pattern recognition using hidden Markov models based on the entropy lifting wavelet coefficients. Electrical Engineering, 2020, 21(10): 93-102.
链接本文:  
https://dqjs.cesmedia.cn/CN/Y2020/V21/I10/93