电气技术  2021, Vol. 22 Issue (5): 38-42    DOI:
研究与开发 |
基于YOLOv4模型的玻璃绝缘子自爆缺陷识别方法
周宸, 高伟, 郭谋发
福州大学电气工程与自动化学院,福州 350108
Recognition method of self-explosion defects of glass insulators based on YOLOv4 model
ZHOU Chen, GAO Wei, GUO Moufa
College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108
全文: PDF (8425 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 绝缘子是输电线路的重要元件,绝缘子缺陷会增大输电线路的故障停运风险,因此,对绝缘子缺陷状况的早期判别十分重要。本文提出一种基于YOLOv4模型的玻璃绝缘子自爆缺陷辨识方法。首先,通过无人机采集及数据增强获取大量详实的现场绝缘子图像;其次,通过采用迁移学习的训练策略训练YOLOv4网络并改进网络的输入图像以提高辨识的准确性;最后,通过实验验证改进策略提高了网络性能。实验结果表明,所提的方法可准确、有效地实现对绝缘子缺陷的辨识。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
周宸
高伟
郭谋发
关键词 输电线路绝缘子缺陷辨识YOLOv4网络多阶段迁移学习    
Abstract:Insulators are important components of transmission lines, and their failure will increase the risk of outages of transmission lines. Therefore, it is very important to distinguish the defects of insulators in the early stage. A method for identifying self-explosion defects of glass insulators based on the YOLOv4 model is proposed in this paper. Firstly, a large number of detailed images of field insulators are obtained through unmanned aerial vehicle acquisition and data enhancement. Secondly, the training strategy of transfer learning is adopted to train the YOLOv4 network and improve the input image of the network to achieve the accuracy of identification. Finally, the improvement of network performance is verified by experiments. The experimental results show that the proposed method can accurately and effectively realize the identification of insulator defects.
Key wordstransmission line    insulators    defect identification    YOLOv4 network    multi-stage transfer learning   
收稿日期: 2020-10-09     
作者简介: 周宸(1995—),男,福州人,硕士研究生,主要从事输电线路故障图像辨识工作。
引用本文:   
周宸, 高伟, 郭谋发. 基于YOLOv4模型的玻璃绝缘子自爆缺陷识别方法[J]. 电气技术, 2021, 22(5): 38-42. ZHOU Chen, GAO Wei, GUO Moufa. Recognition method of self-explosion defects of glass insulators based on YOLOv4 model. Electrical Engineering, 2021, 22(5): 38-42.
链接本文:  
https://dqjs.cesmedia.cn/CN/Y2021/V22/I5/38