研究与开发
|
短路电动力作用下变压器低压绕组变形研究
林野, 兰生, 许明龙, 陈杰, 朱志豪
福州大学电气与自动化学院, 福州 350108
Research on deformation of transformer low-voltage winding under short-circuit electromagnetic force
LIN Ye, LAN Sheng, XU Minglong, CHEN Jie, ZHU Zhihao
School of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108
摘要 电力变压器短路时会产生巨大的短路电动力,当短路电动力过大时会导致变压器绕组变形。为研究三相三绕组变压器短路时的电动力分布和绕组变形情况,本文以一台50MV·A/110kV的三相三绕组变压器为例,计算变压器发生短路时的短路电流,将该短路电流作为激励,通过有限元软件计算绕组的短路电动力,采用磁-结构耦合的方式计算在最大短路电动力作用下的绕组变形和应力分布。结果表明,短路时低压绕组受到向内压缩的辐向电动力和向中间压缩的轴向电动力,绕组中间部分受到的短路电动力大于两端,导致绕组中部的变形程度大于两端。研究结果对研究变压器绕组变形具有一定实际意义。
关键词 :
三绕组变压器 ,
磁-结构耦合 ,
短路电动力 ,
绕组变形
Abstract :There is a huge short-circuit electromagnetic force in short-circuited condition for power transformer. When short-circuit electromagnetic force is too large, it will cause the transformer winding deformation. In this paper, a 50MV·A three-phase three-winding transformer is taken as an example. The short circuit current in three-phase symmetrical short-circuited condition for transformer is calculated and took as an excitation in finite element analysis. Then the short-circuit electromotive force of winding is calculated by finite element software. The magnetic-structure coupling method is used to calculate the winding deformation and stress distribution under the maximum short-circuit electromagnetic force. The results show that the low-voltage winding is subjected to the radial electromagnetic force compressed inward and the axial electromagnetic force compressed toward the middle during short-circuit. The short-circuit electromagnetic force that acts on the middle part of the winding is greater than the two ends, which causes the deformation of the middle part of the winding to be greater than the two ends. The research results have certain practical significance for related researches such as transformer winding deformation.
Key words :
three-winding transformer
magnetic-structural coupling
short-circuit electromagnetic force
winding deformation
收稿日期: 2021-08-09
作者简介 : 林野(1997—),广东省揭阳市人,男,硕士研究生,主要从事变压器绕组变形机理研究工作。
引用本文:
林野, 兰生, 许明龙, 陈杰, 朱志豪. 短路电动力作用下变压器低压绕组变形研究[J]. 电气技术, 2022, 23(1): 8-14.
LIN Ye, LAN Sheng, XU Minglong, CHEN Jie, ZHU Zhihao. Research on deformation of transformer low-voltage winding under short-circuit electromagnetic force. Electrical Engineering, 2022, 23(1): 8-14.
链接本文:
https://dqjs.cesmedia.cn/CN/Y2022/V23/I1/8
[1] 潘超, 米俭, 王格万, 等. 基于场路耦合的变压器绕组匝间短路电磁谐响应分析方法[J]. 电工技术学报, 2019, 34(4): 673-682. [2] 张云, 李少逸, 黄晓波. 一起220kV变压器突发短路故障分析[J]. 电气技术, 2018, 19(5): 94-98. [3] AHN H M, OH Y H, KIM J K, et al.Experimental verification and finite element analysis of short-circuit electromagnetic force for dry-type transformer[J]. IEEE Transactions on Magnetics, 2012, 48(2): 819-822. [4] EBRAHIMI B M, FEREIDUNIAN A, SAFFARI S, et al.Analytical estimation of short circuit axial and radial forces on power transformers windings[J]. IET Generation, Transmission & Distribution, 2014, 8(2): 250-260. [5] BAKSHI A, KULKARNI S V.Coupled electromagnetic- wtructural analysis of the spiraling phenomenon in a helical winding of a power transformer[J]. IEEE Transactions on Power Delivery, 2014, 29(1): 235-240. [6] ZHAO Yi, WEN Tao, JIN Mingkai, et al.Distribution characteristics of three-dimensional leakage magnetic field at the transposition structure of transformer winding[C]//2020 IEEE Electrical Insulation Conference (EIC), Knoxville, TN, USA, 2020: 387-391. [7] GEISSLER D, LEIBFRIED T.Short-circuit strength of power transformer windings-verification of tests by a finite element analysis-based model[J]. IEEE Transa- ctions on Power Delivery, 2017, 32(4): 1705-1712. [8] ZHANG Bo, YAN Ning, MA Shaohua, et al.Buckling strength analysis of transformer windings based on electromagnetic thermal structural coupling method[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2): 1-4. [9] 徐肖伟, 钱国超, 邹德旭, 等. 不同模型下变压器绕组漏磁场及短路力的比对研究[J]. 高压电器, 2016, 52(5): 85-89, 95. [10] 徐永明, 郭蓉, 张洪达. 电力变压器绕组短路电动力计算[J]. 电机与控制学报, 2014, 18(5): 36-42. [11] 熊汉武, 张书琦, 赵志刚, 等. 电力变压器绕组幅向弯曲应力分析方法[J]. 高电压技术, 2020, 46(3): 931-938. [12] 胡忠平, 廖福旺, 兰生. 变压器绕组辐向稳定性研究[J]. 电气技术, 2017, 18(4): 32-38. [13] 张博, 李岩. 多次冲击条件下的大型变压器绕组辐向失稳[J]. 电工技术学报, 2017, 32(增刊2): 71-76. [14] 张海军, 张华, 马强, 等. 基于有限元的电力变压器绕组弹塑性变形分析[J]. 高压电器, 2019, 55(6): 170-176. [15] 王楠, 刘宝成, 臧春艳, 等. 基于磁—结构耦合场的变压器绕组形变分析[J]. 高压电器, 2016, 52(1): 94-100. [16] 杜国安, 徐玉珍, 兰生, 等. 基于磁-结构场耦合的变压器绕组变形的因素分析[J]. 电气技术, 2021, 22(1): 1-7, 46. [17] 郑含博, 翟进乾, 李哲, 等. 大型电力变压器内绕组辐向抗短路能力评估[J]. 电力系统保护与控制, 2016, 44(22): 154-158.
[1]
陈杰, 兰生, 林野, 许明龙, 朱志豪. 基于Matlab的变压器绕组变形频率响应的仿真研究 [J]. 电气技术, 2022, 23(3): 23-30.
[2]
许明龙, 徐玉珍, 兰生, 林野, 陈杰. 考虑电力变压器相间影响的绕组变形累积仿真研究 [J]. 电气技术, 2022, 23(2): 13-19.
[3]
张云, 李少逸, 黄晓波. 一起220kV变压器突发短路故障分析 [J]. 电气技术, 2018, 19(5): 94-98.
[4]
刘效真, 高占岭, 李秀国, 郭峰, 杨锟. 一起变压器绕组变形故障的分析与判断 [J]. 电气技术, 2015, 16(8): 92-94.
[5]
张秀斌, 吕景顺, 温定筠, 江峰, 王锋. 基于频率响应法的110kV主变压器绕形案例分析 [J]. 电气技术, 2015, 16(04): 97-100.
[6]
陈延云,蔡培,王锐,戴申华. 不同系统接线方式下电压调差率的整定计算 [J]. 电气技术, 2015, 16(01): 71-74.
[7]
王亚芳. 地区电力变压器绕组变形故障后的诊断分析 [J]. 电气技术, 2014, 15(12): 73-76.
[8]
陈超. 基于FPGA的变压器绕组变形测试仪研制 [J]. 电气技术, 2013, 14(10): 64-67.