电气技术  2018, Vol. 19 Issue (2): 54-60    DOI:
研究与开发 |
基于改进Q学习算法的储能系统实时优化决策研究
汪波, 郑文迪
福州大学电气工程与自动化学院,福州 350116
Research on real-time optimization decision of energy storage system based on improved Q-learning algorithm
Wang Bo, Zheng Wendi
School of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350116
全文: PDF (5415 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 随着分布式清洁能源在电网所占比重逐年增加,其功率预测误差给电网的稳定运行带来巨大挑战,如何使储能系统在实时调度周期快速做出充放电决策达到最优的削峰填谷效果需要一种控制方法。本文考虑储能系统充放电爬坡和存储电量限值等约束条件,提出改进的Q学习算法,用全局最优惩罚项引导其利用离线数据分阶段学习训练得出最优决策,可以快速地收敛,且准确性高;在实时调度周期负荷功率预测不准确时,储能系统只需要修正状态量并判断其所处状态,基于训练好的Q值表,采用贪婪策略可以快速得出其最优动作值,不需要再进行全局寻优迭代运算。仿真算例结果表明,相比于传统Q学习算法,本文所提方法收敛速度更快,且训练好的Q值表可以用于实时调度周期储能系统做优化决策。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪波
郑文迪
关键词 Q学习储能系统实时优化决策    
Abstract:With the increasing proportion of clean distributed energy in the power grid, the stable operation of the power grid is challenged by the power prediction error, a control method is required for energy storage system to make a rapid charge and discharge decision to achieve the best effect of peak shaving and load shifting in the real-time scheduling cycle. Considering the constraints such as unit ramp rate and capacity limit of the energy storage system, an improved Q-learning algorithm is proposed, using the penalty term lead the algorithm to obtain optimal decisions by training in phases using the offline data, which has a fast convergence performance and high accuracy; In the real-time scheduling cycle, when the prediction of load power is not accurate, energy storage system don’t need the iterative operation, it just needs to correct the state values and judge its state, then obtain its optimal action value by using the greedy strategy based on the trained Q value table. The simulation results show that the method proposed in this paper has a faster convergence performance compared with the traditional Q learning algorithm, and the trained Q value table can be used for energy storage system to make optimal decisions in the real-time scheduling cycle.
Key wordsQ learning    energy storage system    real-time    optimization decision-making   
收稿日期: 2017-09-07      出版日期: 2018-02-07
作者简介: 汪波(1993-),男,硕士研究生,研究方向为分布式电源的研究
引用本文:   
汪波, 郑文迪. 基于改进Q学习算法的储能系统实时优化决策研究[J]. 电气技术, 2018, 19(2): 54-60. Wang Bo, Zheng Wendi. Research on real-time optimization decision of energy storage system based on improved Q-learning algorithm. Electrical Engineering, 2018, 19(2): 54-60.
链接本文:  
https://dqjs.cesmedia.cn/CN/Y2018/V19/I2/54