As an important product of the strong smart grid, optical fiber composite low-voltage cable (OPLC) combines optical units and cables to achieve dual transmission of information and power. OPLC temperature characteristics studies are very important to determine the stability and reliability of optical network transmission. Based on the thermoelectric analogy theory, a modeling method of OPLC heat circuit model is proposed in this paper. The transient thermal path model is established by taking the double cable OPLC as an example, and the position of the light unit is separately modeled to realize the accurate calculation of the temperature of each position. On this basis, the genetic algorithm (GA) is used to identify the thermal resistance and heat capacity parameters of the model, which improves the accuracy of temperature characteristics research. Through the COMSOL simulation analysis and the temperature measurement experimental platform to establish different current magnitudes, the OPLC temperature values are obtained. Comparing the heat path model, the error between the temperature value of each position and the temperature value of the simulation and experiment is less than 1.3℃, which verifies the validity of OPLC temperature characteristics based on thermoelectric analogy.
王源, 李兴宝, 杨明月, 徐娟, 付娜. 基于热电类比理论的光纤复合低压电缆温度分布特性研究[J]. 电气技术, 2021, 22(3): 44-51.
WANG Yuan, LI Xingbao, YANG Mingyue, XU Juan, FU Na. Research on temperature distribution characteristics of optical fiber composite low voltage cable based on thermoelectric analogy theory. Electrical Engineering, 2021, 22(3): 44-51.
[1] 迟远英, 祁齐, 邬龙, 等. 基于不同利益主体的OPLC项目效益综合评价[J]. 电力系统保护与控制, 2018, 46(22): 72-79.
[2] 范宏, 高亮, 周利俊, 等. 智能电网的电力光纤入户技术及其应用[J]. 电力自动化设备, 2013, 33(7): 149-154.
[3] SHAH M A, YU Chen, ASHFAQ A, et al.Temperature field distribution of optical fiber composite low- voltage cable[C]//2017 International Symposium on Electrical Insulating Materials (ISEIM), 2017: 295-298.
[4] 石培培, 胡红利, 王格, 等. 光纤复合低压电缆温度分布影响因素分析[J]. 西北大学学报(自然科学版), 2018, 48(1): 24-30.
[5] 刘刚, 雷成华, 刘毅刚. 根据电缆表面温度推算导体温度的热路简化模型暂态误差分析[J]. 电网技术, 2011, 4(35): 212-217.
[6] 应展烽, 冯凯, 杜志佳, 等. 高压架空导线电流与轴向温度关系计算的热路模型[J]. 中国电机工程学报, 2015, 35(11): 2887-2895.
[7] BRAGATTO T, CRESTA M, GATTA F M, et al.Underground MV power cable joints: a nonlinear thermal circuit model and its experimental vali- dation[J]. Electric Power Systems Research, 2017, 149(4): 190-197.
[8] 方睿, 鲁华祥, 李志坚, 等. 基于矩阵广义逆的电缆线芯温度动态计算方法[J]. 电网技术, 2015, 39(1): 97-102.
[9] LING Hao, FEI Xu, CHEN Qun, et al.A thermal- electrical analogy transient model of district heating pipelines for integrated analysis of thermal and power systems[J]. Applied Thermal Engineering, 2018, 139: 213-221.
[10] RUI Cheng, XIN Wang, ZHANG Yinping.Analytical optimization of the transient thermal performance of building wall by using thermal impedance based on thermal-electric analogy[J]. Energy and Buildings, 2014, 80: 598-612.
[11] CAPIZZI G, SCIUTO G L, CAMMARATA G, et al.Thermal transients simulations of a building by a dynamic model based on thermal-electrical analogy: evaluation and implementation issue[J]. Applied Energy, 2017, 199: 323-334.
[12] ANDRZEJ C, PAWE? O.The use of thermal-electric analogy in solar collector thermal state analysis[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 397-409.
[13] 吕安强, 寇欣, 尹成群, 等. 三芯海底电缆中复合光纤与导体温度关系建模[J]. 电工技术学报, 2016, 31(18): 59-65.
[14] 梁培鑫, 裴宇龙, 甘磊, 等. 高功率密度轮毂电机温度场建模研究[J]. 电工技术学报, 2015, 30(14): 170-176.
[15] 肖曦, 许青松, 王雅婷, 等. 基于遗传算法的内埋式永磁同步电机参数辨识方法[J]. 电工技术学报, 2014, 29(3): 21-26.