Abstract:A small-signal stability preventive control method based on convolutional neural network (CNN) sensitivity analysis is presented in the paper, to improve the developing speed of small- signal stability preventive control measures. For poor or negative damping low frequency oscillation modes (i.e., the damping ratios are smaller than a threshold), first, an optimization model with small- signal stability constraints is established; second, the sensitivities of the damping ratios with respect to control variables (the active power of adjustable generators) based on CNN model of damping ratio prediction are calculated and then the optimization model is transformed into a quadratic programming model by linearizing small-signal stability constraints through sensitivities; finally, the adjustment amounts of generator active power are obtained. Several iterations are needed to make the damping ratios meet specific requirements. Analysis results of WEPRI 36-node case show that the effective control measures can be obtained by the presented method, which is more precise than that of the support vector machine method. The computing speed of the presented method is faster than that of the traditional eigenvalue analysis method. The ideas presented in this paper can also be applied to transient stability preventive control.
田芳, 周孝信, 于之虹. 基于卷积神经网络的电力系统小干扰稳定评估与预防控制[J]. 电气技术, 2025, 26(3): 1-6.
TIAN Fang, ZHOU Xiaoxin, YU Zhihong. Small-signal stability assessment and preventive control of power system based on convolutional neural network. Electrical Engineering, 2025, 26(3): 1-6.
[1] 周孝信, 赵强, 张玉琼.“双碳”目标下我国能源电力系统发展前景和关键技术[J].中国电力企业管理, 2021(31): 14-17. [2] 严剑峰, 于之虹, 田芳, 等. 电力系统在线动态安全评估和预警系统[J].中国电机工程学报, 2008, 28(34): 87-93. [3] 王也, 徐茂达, 郝文波, 等. 双馈感应风机控制环节对电力系统机电小干扰稳定的影响分析[J].电气技术, 2019, 20(9): 31-38. [4] 李艳梅, 魏巍, 肖龙, 等. 默蒂亚里-拉合尔工程低频振荡分析[J].电气技术, 2023, 24(6): 37-41. [5] 郑安然, 郭春义, 殷子寒, 等. 提高弱交流系统下混合多端直流输电系统小干扰稳定性的控制参数优化调节方法[J].电工技术学报, 2020, 35(6): 1336-1345. [6] 韩应生, 孙海顺, 秦世耀, 等. 电压源型双馈风电并网系统小扰动低频稳定性分析[J].电工技术学报, 2023, 38(5): 1312-1324, 1374. [7] 赵洋, 王瀚墨, 康丽, 等. 基于时间卷积网络的短期电力负荷预测[J].电工技术学报, 2022, 37(5): 1242-1251. [8] 方正刚. 基于通道融合的Res-CNN-LSTM电网虚假数据注入攻击检测[J].电气技术, 2024, 25(3): 11-17, 62. [9] THAMS F, VENZKE A, ERIKSSON R, et al.Efficient database generation for data-driven security assess- ment of power systems[J].IEEE Transactions on Power Systems, 2020, 35(1): 30-41. [10] LIU Juelin, YANG Zhifang, ZHAO Junbo, et al.Explicit data-driven small-signal stability constrained optimal power flow[J].IEEE Transactions on Power Systems, 2022, 37(5): 3726-3737. [11] SHI Dongyu, YAN Jianfeng, GAO Bo, et al.Study on quick judgement of small signal stability using CNN[J].The Journal of Engineering, 2019(16): 826-829. [12] 李洋麟, 江全元, 颜融, 等. 基于卷积神经网络的电力系统小干扰稳定评估[J].电力系统自动化, 2019, 43(2): 50-57. [13] 郭梦轩, 管霖, 苏寅生, 等. 基于改进边图卷积网络的电力系统小干扰稳定评估模型[J].电网技术, 2022, 46(6): 2095-2103. [14] SHI Dongyu, ZHANG Lulu.Research on quick judgment of power system stability using grid hierarchy net[J].Energy Reports, 2021, 7: 25-32. [15] SHI D Y, LÜ Y, YU Z H, et al.Study on stability feature extraction of power system using deep learning[J].IOP Conference Series: Earth and Environmental Science, 2020, 431(1): 012031. [16] AZMAN S K, ISBEIH Y J, EI MOURSI M S, et al. A unified online deep learning prediction model for small signal and transient stability[J].IEEE Transactions on Power Systems, 2020, 35(6): 4585-4598. [17] 于之虹, 李芳, 孙璐, 等. 小干扰稳定调度控制策略在线计算方法[J].中国电机工程学报, 2014, 34(34): 6191-6198. [18] TIAN Fang, ZHOU Xiaoxin, YU Zhihong.A coor- dinated preventive control optimization method of small signal and transient stability based on sensitivity analysis[C]//2020 5th Asia Conference on Power and Electrical Engineering (ACPEE), Chengdu, China, 2020. [19] ASVAPOOSITKUI S, PREECE R.Decision tree-based prediction model for small signal stability and generation-rescheduling preventive control[J].Electric Power Systems Research, 2021, 196: 107200. [20] FU Yiwei, CHEN Lei, YU Zhe, et al.Data-driven low frequency oscillation mode identification and preventive control strategy based on gradient descent[J].Electric Power Systems Research, 2020, 189: 106544. [21] 田芳, 周孝信, 史东宇, 等. 基于卷积神经网络的电力系统暂态稳定预防控制方法[J].电力系统保护与控制, 2020, 48(18): 1-8.