Influence of background magnetic field on the induced magnetic field and magneto-mechanical coupling effect of ferromagnets
WANG Zuoshuai1,2, ZUO Chao1,2, XIAO Hanchen1,2, WANG Yayu3, ZHOU Yunshu3
1. Hubei Key Laboratory of Marine Electromagnetic Detection and Control, Wuhan 430064; 2. Wuhan Second Ship Design and Research Institute, Wuhan 430064; 3. State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074
Abstract:Under pressure, the magnetic field outside the ferromagnetic cavity is more complex under the influence of the background magnetic field, which reduces the accuracy of magnetic detection. Therefore, a comprehensive study of the influence of background magnetic fields on spatial magnetic fields is of great significance. In this paper, a magneto-mechanical coupling model for an oxygen tank is developed based on the improved Jiles-Atherton theory, and the composition of the spatial magnetic field is classified. The influence of the background magnetic field on each component of the spatial magnetic field is simulated and calculated. By establishing the relationship between the induced magnetic field and the background magnetic field, and analyzing the influence of the background magnetic field on the magneto-mechanical coupling effect under specified pressure, references are provided for the magnetic detection.
王作帅, 左超, 肖涵琛, 王雅钰, 周芸姝. 背景磁场对铁磁体感应磁场及力磁耦合效应的影响[J]. 电气技术, 2025, 26(4): 13-19.
WANG Zuoshuai, ZUO Chao, XIAO Hanchen, WANG Yayu, ZHOU Yunshu. Influence of background magnetic field on the induced magnetic field and magneto-mechanical coupling effect of ferromagnets. Electrical Engineering, 2025, 26(4): 13-19.
[1] KALUZA A, LINDOW K, STARK R.Investigating challenges of a sustainable use of marine mineral resources[J].Procedia Manufacturing, 2018, 21: 321-328. [2] GAO Ning, WANG Aiyuan, WEN Jie, et al.Analysis and reduction of magnetizing inrush current for switch-on unloaded transformer[C]//2013 2nd Inter- national Symposium on Instrumentation and Mea- surement, Sensor Network and Automation (IMSNA), Toronto, ON, Canada, 2013: 1022-1026. [3] WEI Wei, LIU Ying, MEI Shengwei, et al.Study on residual flux evaluation method based on variable- regional integral during the voltage attenuation pro- cess[C]//2019 IEEE Innovative Smart Grid Technologies- Asia (ISGT Asia), Chengdu, China, 2019: 954-959. [4] 李勇, 金明亮, 李海涛, 等. 电力变压器剩磁测量方法研究[J].电力系统保护与控制, 2019, 47(15): 102-107. [5] GE Wenqi, WANG Youhua, ZHAO Zhenghan, et al.Residual flux in the closed magnetic core of a power transformer[J].IEEE Transactions on Applied Super- conductivity, 2014, 24(3): 0502404. [6] CAVALLERA D, COULOMB J L, CHADEBEC O, et al.A simple model to explain the leakage flux measured around an off line transformer[C]// COMPUMAG 2011, Sydney, Australia, 2011. [7] CAVALLERA D, OIRING V, COULOMB J L, et al.A new method to evaluate residual flux thanks to leakage flux, application to a transformer[J].IEEE Transa- ctions on Magnetics, 2014, 50(2): 7024904. [8] HUO Cailing, WANG Youhua, WU Shipu, et al.Research on residual flux density measurement for single-phase transformer core based on energy changes[J].IEEE Transactions on Instrumentation and Measurement, 2021, 70: 6011909. [9] ZHANG Haipeng, LONG Jiajie, LI Xianhao, et al.A new method to measure the residual flux by magnetic sensors and a finite element model[J].IEEE Transa- ctions on Instrumentation and Measurement, 2023, 72: 6006010.[10] BOZORTH R M, WILLIAMS H J.Effect of small stresses on magnetic properties[J].Reviews of Modern Physics, 1945, 17(1): 72-80. [11] CRAIK D J, WOOD M J.Magnetization changes induced by stress in a constant applied field[J].Journal of Physics D: Applied Physics, 1970, 3(7): 1009-1016. [12] RUUSKANEN P, KETTUNEN P.Reversible com- ponent ΔBr of the stress-induced change in mag- netization as a function of magnetic field strength and stress amplitude[J].Journal of Magnetism and Mag- netic Materials, 1991, 98(3): 349-358. [13] JILES D C, DEVINE M K.The law of approach as a means of modelling the magnetomechanical effect[J].Journal of Magnetism and Magnetic Materials, 1995, 140: 1881-1882. [14] MAYLIN M G, SQUIRE P T.The effects of stress on induction, differential permeability and barkhausen count in a ferromagnet[J].IEEE Transactions on Magnetics, 1993, 29(6): 3499-3501. [15] JILES D C.Theory of the magnetomechanical effect[J].Journal of Physics D: Applied Physics, 1995, 28(8): 1537-1546. [16] SMITH R C, DAPINO M J, BRAUN T R, et al.A homogenized energy framework for ferromagnetic hysteresis[J].IEEE Transactions on Magnetics, 200642(7): 1747-1769. [17] ZHANG Haipeng, WANG Zuoshuai, LONG Jiajie, et al.Research on the magnetomechanical coupling effect of ferromagnetic cavity based on improved Jiles- Atherton theory[J].IEEE Transactions on Instru- mentation and Measurement, 2023, 72: 6007210. [18] 李永建, 李宗明, 利雅婷, 等. 考虑磁-力耦合效应的混合磁滞模型研究[J].电工技术学报, 2024, 39(22): 6941-6951. [19] 朱育莹, 李琳. 考虑各向异性和模型参数应力依赖关系的改进Sablik-Jiles-Atherton磁滞模型[J].电工技术学报, 2023, 38(17): 4586-4596. [20] 王旭, 张艳丽, 唐伟, 等. 旋转磁化下逆矢量Jiles- Atherton磁滞模型改进[J].电工技术学报, 2018, 33(增刊2): 257-262. [21] 李长云, 刘亚魁. 直流偏磁条件下变压器铁心磁化特性的Jiles-Atherton修正模型[J].电工技术学报, 2017, 32(19): 193-201. [22] 陈利翔, 吴丹岳, 邵振国. 基于J-A动态磁滞模型的电流互感器谐波变换建模及实验验证[J].电气技术, 2016, 17(8): 14-18, 23.