研究与开发
|
基于超声波传感器与孤立森林的光伏系统串联电弧故障诊断方法
黄晨昊, 高伟
福州大学电气工程与自动化学院,福州 350108
Series arc fault diagnosis method for photovoltaic system based on ultrasonic sensor and isolation forest
HUANG Chenhao, GAO Wei
College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108
摘要 针对大部分光伏电站电弧故障历史数据缺乏的问题,本文在采集电弧超声信号并分析其特点后,提出一种基于超声波传感器与孤立森林的光伏系统串联电弧故障诊断方法。首先,利用S变换将发生串联电弧故障时的超声波暂态电压信号转化至时频域;接着,利用Teager能量算子放大频谱差异性,并通过时频熵提取电弧故障时频域特征;最后,基于动态阈值与孤立森林实现电弧故障诊断且无需历史数据。实验结果表明,所提方法能准确识别串联电弧故障,诊断准确率达到97.25%,且具备较强的抗干扰能力。
关键词 :
光伏系统 ,
电弧故障诊断 ,
超声波信号 ,
S变换 ,
孤立森林
Abstract :Aiming at the problem of the lack of historical data on arc faults in most photovoltaic power stations, this paper proposes a photovoltaic system series arc fault diagnosis method based on ultrasonic sensors and isolation forest after collecting arc ultrasonic signals and analyzing their characteristics. Firstly, arc ultrasonic signals are collected and their characteristics and advantages are analyzed. Secondly, the S-transform is used to convert the transient voltage signal of the ultrasonic wave during the occurrence of series arc faults to the time-frequency domain. Then, the Teager energy operator is used to amplify the spectral differences. Subsequently, the time-frequency entropy is used to extract the time-frequency domain features of arc faults. Finally, arc faults are diagnosed based on dynamic thresholds and isolation forest without the need for historical data. Experimental results show that the proposed method can accurately identify series arc faults, with a diagnosis accuracy rate of 97.25%, and has strong anti-interference ability.
Key words :
photovoltaic system
arc fault diagnosis
ultrasonic signal
S-transform
isolation forest
收稿日期: 2025-01-09
作者简介 : 黄晨昊(2000—),男,福建省宁德市人,硕士研究生,主要从事光伏系统电弧故障检测与定位方面的研究工作。
引用本文:
黄晨昊, 高伟. 基于超声波传感器与孤立森林的光伏系统串联电弧故障诊断方法[J]. 电气技术, 2025, 26(5): 10-16.
HUANG Chenhao, GAO Wei. Series arc fault diagnosis method for photovoltaic system based on ultrasonic sensor and isolation forest. Electrical Engineering, 2025, 26(5): 10-16.
链接本文:
https://dqjs.cesmedia.cn/CN/Y2025/V26/I5/10
[1] 涂彦昭, 高伟, 杨耿杰. 一种基于卷积神经网络和长短期记忆网络的光伏系统故障辨识方法[J]. 电气技术, 2022, 23(2): 48-54. [2] 陈世群, 高伟, 陈孝琪, 等. 一种基于极限学习机和皮尔逊相关系数的光伏阵列故障快速诊断方法[J]. 电气技术, 2021, 22(10): 57-64. [3] 许杨, 吕雪松, 张科乾, 等. 柔性光伏电池阵列物理参数特性建模[J]. 电气技术, 2023, 24(9): 49-54. [4] 国家能源局. 2024年可再生能源并网运行情况[EB/OL]. (2025-01-27). [2025-05-13]. https://www.nea.gov.cn/20250221/e10f363cabe3458aaf78ba4558970054/c.html. [5] 林亮世, 高伟, 杨耿杰. 基于冗余天线阵列和加权质心算法的光伏系统直流电弧故障定位方法[J]. 电气技术, 2024, 25(4): 16-23, 31. [6] 王尧, 马桐桐, 赵宇初, 等. 基于电磁辐射时延估计的串联光伏直流电弧故障定位方法[J]. 电工技术学报, 2023, 38(8): 2233-2243. [7] 杨亚宇, 邰能灵, 黄文焘, 等. 船舶中压直流综合电力系统(二): 故障保护管理技术[J]. 电工技术学报, 2024, 39(23): 7341-7364. [8] LU Qiwei, YE Zeyu, SU Mengmeng, et al.A DC series arc fault detection method using line current and supply voltage[J]. IEEE Access, 2020, 8: 10134-10146. [9] XIONG Qing, JI Shengchang, LIU Xiaojun, et al.Detecting and localizing series arc fault in photo- voltaic systems based on time and frequency characteristics of capacitor current[J]. Solar Energy, 2018, 170: 788-799. [10] 王先发, 顾卫祥. 光伏系统直流侧故障电弧的检测与判别[J]. 电气技术, 2019, 20(5): 10-13. [11] WANG Yao, BAI Cuiyan, QIAN Xiaopeng, et al.A DC series arc fault detection method based on a light- weight convolutional neural network used in photo- voltaic system[J]. Energies, 2022, 15(8): 2877-2877. [12] 王尧, 张彦风, 牛峰, 等. 光伏直流电弧电磁辐射特性分析与测量方法[J]. 电工技术学报, 2019, 34(14): 2913-2921. [13] XING Qing, JI Shengchang, ZHU Lingyu, et al.A novel DC arc fault detection method based on electromagnetic radiation signal[J]. IEEE Transactions on Plasma Science, 2017, 45(3): 472-478. [14] 舒奇航, 刘希喆, 王阳. 基于电弧电流和超声波的串联故障电弧的检测[J]. 电气自动化, 2023, 45(3): 23-25, 29. [15] 吴振跃, 肖登明. 新型弧光保护装置的设计[J]. 电气技术, 2014, 15(5): 5-11. [16] VASILE C, IOANA C, DIGULESCU A, et al.Electromagnetic and acoustic bimodality for the detection and localization of electrical arc faults[C]// Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies VIII, Constanta, Romania, 2016. [17] CATTIN V, PERICHON P, DAHMANI J, et al.Detection of electric arcs in large batteries[C]//World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 2013: 1-9. [18] 刘云鹏, 来庭煜, 刘嘉硕, 等. 特高压直流换流阀饱和电抗器振动声纹特性与松动程度声纹检测方法[J]. 电工技术学报, 2023, 38(5): 1375-1389. [19] 高云鹏, 李峰, 陈婧, 等. 基于Teager-Kaiser能量算子Rife-Vincent窗频谱校正的电压闪变测量[J]. 电工技术学报, 2014, 29(6): 248-256. [20] 韩绍禹, 李新辉. 基于信息熵和节点导纳矩阵的光伏谐波路径初探[J]. 电气技术, 2019, 20(5): 55-58. [21] 严爱军, 和世潇, 汤健. 基于节点评估与最大类间方差的孤立森林异常值检测[J]. 北京工业大学学报, 2024, 50(10): 1188-1197. [22] GAO Wei, WAI R J.Series arc fault detection of grid-connected PV system via SVD denoising and IEWT-TWSVM[J]. IEEE Journal of Photovoltaics, 2021, 11(6): 1493-1510. [23] 邬洲, 张军, 李隆, 等. 基于Kmeans++聚类的光伏系统直流电弧故障检测研究[J]. 太阳能学报, 2024, 45(11): 320-329.
[1]
黎宏飞, 高宗宝, 张靖, 马亚光. 一起330kV气体绝缘金属封闭开关设备金属毛刺放电缺陷分析与处理 [J]. 电气技术, 2025, 26(3): 65-69.
[2]
林亮世, 高伟, 杨耿杰. 基于冗余天线阵列和加权质心算法的光伏系统直流电弧故障定位方法 [J]. 电气技术, 2024, 25(4): 16-23.
[3]
涂彦昭, 高伟, 杨耿杰. 一种基于卷积神经网络和长短期记忆网络的光伏系统故障辨识方法 [J]. 电气技术, 2022, 23(2): 48-54.
[4]
黎青, 王万军, 周振平. 微电网系统最优容量配比及潮流分析研究 [J]. 电气技术, 2022, 23(12): 17-23.
[5]
王先发, 顾卫祥. 光伏系统直流侧故障电弧的检测与判别 [J]. 电气技术, 2019, 20(5): 10-13.
[6]
李中华, 聂忠伟. 基于广义S变换的暂态电能质量检测方法 [J]. 电气技术, 2013, 14(03): 13-18.
[7]
陈勇, 魏金成. 独立光伏发电系统仿真研究 [J]. 电气技术, 2013, 14(01): 9-13.