Abstract:The current methods for predicting the state of health of lithium batteries often suffer from low accuracy. This paper introduces a method for state of health prediction using a seagull optimization algorithm optimized deep extreme learning machine. Key health feature parameters, such as constant voltage charging and discharging times during battery cycles, are selected and their correlation with the battery state of health is analyzed using Pearson correlation. The proposed model predicts subsequent state of health values by learning from samples. Experiments conducted with battery data compare the proposed method with single extreme learning machine, single deep extreme learning machine, and other literature. Evaluation metrics, including maximum absolute error and root mean square error, demonstrate that the seagull optimization algorithm optimized deep extreme learning machine model achieves higher accuracy and faster prediction times, with errors below 1.1%, indicating superior prediction accuracy and applicability.
靳灿, 张晓燕, 孙本川. 基于海鸥优化算法改进深度极限学习机的锂电池健康状态预测[J]. 电气技术, 2025, 26(7): 40-45.
JIN Can, ZHANG Xiaoyan, SUN Benchuan. State of health prediction for lithium batteries based on deep extreme learning machine improved by seagull optimization algorithm. Electrical Engineering, 2025, 26(7): 40-45.
[1] SARMAH S B, KALITA P, GARG A, et al.A review of state of health estimation of energy storage systems: challenges and possible solutions for futuristic applications of Li-ion battery packs in electric vehicles[J]. Journal of Electrochemical Energy Con-version and Storage, 2019, 16(4): 040801. [2] ZHANG Qichao, LI Xue, ZHOU Chun, et al.State-of-health estimation of batteries in an energy storage system based on the actual operating parameters[J]. Journal of Power Sources, 2021, 506: 230162. [3] 关燕鹏, 刘成刚, 相洪涛, 等. 基于概率化稀疏自注意力LSTM的锂离子电池健康状态预测[J]. 控制工程, 2024, 31(10): 1833-1840. [4] MIRZAEE H, KAMRAVA S.Estimation of internal states in a Li-ion battery using BiLSTM with Bayesian hyperparameter optimization[J]. Journal of Energy Storage, 2023, 74: 109522. [5] 赵靖英, 胡劲, 张雪辉, 等. 基于锂电池模型和分数阶理论的SOC-SOH联合估计[J]. 电工技术学报, 2023, 38(17): 4551-4563. [6] 梁杨, 周永军, 蒋淑霞, 等. 基于改进GWO-SVR的锂电池SOH估计[J]. 电子测量技术, 2023, 46(7): 13-18. [7] GUHA A, PATRA A.State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1): 135-146. [8] 马君, 万俊杰. 基于健康特征筛选与GWO-LSSVM的锂电池健康状态预测[J]. 电气技术, 2024, 25(2): 37-44. [9] 丁同, 傅晓锦. 基于改进粒子群优化算法和极限学习机的锂离子电池健康状态预测[J]. 国外电子测量技术, 2023, 42(5): 163-173. [10] 余佩雯, 郁亚娟, 常泽宇, 等. 相关向量机预测锂离子电池剩余有效寿命[J]. 电气技术, 2023, 24(2): 1-5. [11] KIM J, CHUN Huiyong, KIM M, et al.Effective and practical parameters of electrochemical Li-ion battery models for degradation diagnosis[J]. Journal of Energy Storage, 2021, 42: 103077. [12] 吴铁洲, 朱俊超, 成雄帆, 等. 基于充电阶段数据与GWO-BiLSTM模型的锂电池SOH估计方法[J]. 电源技术, 2024, 48(11): 2184-2194. [13] MAO Ling, HU Huizhong, CHEN Jiajun, et al.Online state-of-health estimation method for lithium-ion battery based on CEEMDAN for feature analysis and RBF neural network[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 187-200. [14] 于沛, 王常乐. 基于局部均值分解和极限学习机的锂电池剩余寿命预测[J]. 电气技术, 2023, 24(1): 23-28. [15] 王渴心, 周军, 王岩. 基于鹈鹕优化和极限学习机的锂离子电池健康状态估计[J]. 电气应用, 2023, 42(11): 16-25. [16] 毛玲, 温佳林, 赵晋斌, 等. 基于集成ELM的锂离子电池充电截止电压下的SOC和SOH联合估计[J]. 电力系统保护与控制, 2023, 51(11): 86-95. [17] 顾天宇. 基于神经网络的锂离子电池SOC和SOH估计方法[D]. 青岛: 青岛大学, 2023.