Research on joint state estimation and fault diagnosis method for lithium battery
WANG Bangting1,2, WANG Li1, ZHENG Cong1, YANG Shanshui1, GE Binxin1
1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106; 2. Shanghai Aircraft Design Research Institute, Shanghai 200000
Abstract:The running state of lithium batteries has the problems of insufficient accuracy of ontology state estimation and high difficulty of battery pack fault state diagnosis. A joint state estimation method based on electrothermal coupling model considering the influence of multiple factors is proposed, and a multi-sensor fault diagnosis method based on detection window and correlation coefficient is designed. For the state of lithium battery, firstly, the electrothermal coupling model of lithium battery is constructed based on the equivalent circuit model method. Secondly, the mechanism of joint estimation of state of charge (SOC) and state of health (SOH) is analyzed. Using extended Kalman filter (EKF) and particle filter (PF), combined with online parameter identification method, an online joint estimation model covering the whole life cycle of lithium battery is constructed to achieve accurate joint state estimation. For the battery pack fault state, the multi-sensor fault diagnosis method based on detection window and correlation coefficient realizes the accurate diagnosis and location of short circuit and open circuit faults. The experimental results verify the effectiveness of the proposed method, which can accurately reflect the operation state of the battery, and has certain engineering application value.
王帮亭, 王莉, 郑聪, 杨善水, 葛彬欣. 锂电池联合状态估计与故障诊断方法研究[J]. 电气技术, 2025, 26(7): 1-12.
WANG Bangting, WANG Li, ZHENG Cong, YANG Shanshui, GE Binxin. Research on joint state estimation and fault diagnosis method for lithium battery. Electrical Engineering, 2025, 26(7): 1-12.
[1] TARIQ M, MASWOOD A I, GAJANAYAKE C J, et al.Aircraft batteries: current trend towards more electric aircraft[J]. IET Electrical Systems in Transportation, 2017, 7(2): 93-103. [2] 于沛, 王常乐. 基于局部均值分解和极限学习机的锂电池剩余寿命预测[J]. 电气技术, 2023, 24(1): 23-28. [3] ALI M U, ZAFAR A, NENGROO S H, et al.Towards a smarter battery management system for electric vehicle applications: a critical review of lithium-ion battery state of charge estimation[J]. Energies, 2019, 12(3): 446. [4] ZHENG Yuejiu, OUYANG Minggao, HAN Xuebing, et al.Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles[J]. Journal of Power Sources, 2018, 377: 161-188. [5] 陈治铭, 刘建华, 柯添赐, 等. 基于对抗性的权重注意力机制序列到序列模型的锂离子电池SOC估计方法[J]. 电工技术学报, 2024, 39(19): 6244-6256. [6] 贠祥, 张鑫, 王超, 等. 基于联合参数辨识的粒子群优化扩展粒子滤波的锂电池荷电状态估计[J]. 电工技术学报, 2024, 39(2): 595-606. [7] FU Yumeng, XU Jun, SHI Mingjie, et al.A fast impedance calculation-based battery state-of-health estimation method[J]. IEEE Transactions on Industrial Electronics, 2022, 69(7): 7019-7028. [8] 衣思彤, 刘雅浓, 马耀浥, 等. 基于贝叶斯优化-卷积神经网络-双向长短期记忆神经网络的锂电池健康状态评估[J]. 电气技术, 2024, 25(5): 1-10, 21. [9] 马君, 万俊杰. 基于健康特征筛选与GWO-LSSVM的锂电池健康状态预测[J]. 电气技术, 2024, 25(2): 37-44. [10] ZHOU Yapeng, HUANG Miaohua, CHEN Yupu, et al.A novel health indicator for on-line lithium-ion batteries remaining useful life prediction[J]. Journal of Power Sources, 2016, 321: 1-10. [11] 罗玉涛, 吴志强. 基于DAEKF算法的锂离子电池主要状态在线联合估计[J]. 华南理工大学学报 (自然科学版), 2023, 51(1): 84-94. [12] 刘旖琦, 雷万钧, 刘茜, 等. 基于双自适应扩展粒子滤波器的锂离子电池状态联合估计[J]. 电工技术学报, 2024, 39(2): 607-616. [13] 赵靖英, 胡劲, 张雪辉, 等. 基于锂电池模型和分数阶理论的SOC-SOH联合估计[J]. 电工技术学报, 2023, 38(17): 4551-4563. [14] ZHENG Yusheng, CHE Yunhong, HU Xiaosong, et al.Online sensorless temperature estimation of lithium-ion batteries through electro-thermal coupling[J]. IEEE/ASME Transactions on Mechatronics, 2024, 29(6): 4156-4167. [15] OUYANG Tiancheng, XU Peihang, LU Jie, et al.Coestimation of state-of-charge and state-of-health for power batteries based on multithread dynamic optimi-zation method[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1157-1166. [16] LIU Xuefeng, LI Yichao, KANG Yongzhe, et al.An accurate co-estimation of core temperature and state of charge for lithium-ion batteries with electrothermal model[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2024, 12(1): 231-241. [17] CHE Yanbo, LIU Yushu, CHENG Ze, et al.SOC and SOH identification method of Li-ion battery based on SWPSO-DRNN[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4050-4061. [18] SUN Zhenyu, WANG Zhenpo, LIU Peng, et al.An online data-driven fault diagnosis and thermal runaway early warning for electric vehicle batteries[J]. IEEE Transactions on Power Electronics, 2022, 37(10): 12636-12646. [19] ZHENG Yuejiu, LUO Qi, CUI Yifan, et al.Fault identification and quantitative diagnosis method for series-connected lithium-ion battery packs based on capacity estimation[J]. IEEE Transactions on Industrial Electronics, 2022, 69(3): 3059-3067. [20] LI Weihan, LIMOGE D W, ZHANG Jiawei, et al.Estimation of potentials in lithium-ion batteries using machine learning models[J]. IEEE Transactions on Control Systems Technology, 2022, 30(2): 680-695.