Spectral measurement and analysis of helium dielectric barrier discharge jet at atmospheric pressure
LIN Kui1, WANG Xingquan1, DENG Lingling1,2, WU Shijie1, HE Xiaojin1
1. School of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi 341000; 2. Big Data & Intelligence Engineering School, Chongqing College of International Business and Economics, Chongqing 401520
Abstract:The spectra of helium dielectric barrier discharge jet are measured and analyzed using emission spectrometry at atmospheric pressure. Firstly, the types of active particles in the jet are studied by using coaxial dielectric barrier discharge method. Secondly, the spectral intensity variation laws under different gas flow rates, different peak voltages and different axial distances are studied. Finally, the electron excitation temperature in the jet is studied. The findings reveal that the primary active particles include He I, N2 (C3∏u-B3∏g), N2+(B2∑u+-X2∑g+), ·OH and oxygen free radical. As the helium flow rate increases, the spectral intensity of the active particle spectral lines initially rises and then falls. Conversely, as the peak voltage increases, the spectral intensity of these lines intensifies. As the axial distance increases, except for the continuous decrease in the intensity of the ·OH spectral line, all other spectral lines show a weakening-strengthening-weakening trend. Using the double spectral line method, the electron excitation temperature for two selected spectral lines of He I is calculated to be between 600 K and 1 200 K. Overall, the electron excitation temperature rises with increasing peak voltage and falls with increasing helium gas flow rate.
[1] MAGUREANU M, MANDACHE N B, PARVULESCU V I.Degradation of pharmaceutical compounds in water by non-thermal plasma treatment[J]. Water Research, 2015, 81: 124-136. [2] 张国治, 王文祥, 张磊, 等. 介质阻挡放电等离子体处理变压器废弃绝缘油的实验探究[J]. 电工技术学报, 2025, 40(1): 325-334. [3] BELHAJ KHALIFA I, LADHARI N.Hydrophobic behavior of cotton fabric activated with air atmospheric-pressure plasma[J]. The Journal of the Textile Institute, 2020, 111(8): 1191-1197. [4] 冉红霞, 陈铭晟. 低温等离子体对口腔修复材料表面改性的研究进展[J]. 山西医科大学学报, 2022, 53(3): 371-374. [5] KATSAROS G, GIANNOGLOU M, CHANIOTI S, et al.Production, characterization, microbial inhibition, and in vivo toxicity of cold atmospheric plasma activated water[J]. Innovative Food Science & Emerging Technologies, 2023, 84: 103265. [6] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4): 1339-1358. [7] 陈慧敏, 段戈辉, 梅丹华, 等. 气体添加对水电极同轴介质阻挡放电直接分解CO2的影响[J]. 电工技术学报, 2023, 38(1): 270-279, 284. [8] 吴云柯, 杨谦, 王慧汝, 等. 低温等离子体助燃技术及其在燃烧室中的应用[J]. 航空动力, 2020(3): 62-65. [9] PEVERALL R, RITCHIE G A D. Spectroscopy techniques and the measurement of molecular radical densities in atmospheric pressure plasmas[J]. Plasma Sources Science and Technology, 2019, 28(7): 073002. [10] 李泽, 钱勇, 刘伟, 等. GIS局部放电光信号检测技术及光学图像诊断方法[J]. 电工技术学报, 2025, 40(1): 253-263. [11] 陈勇权, 唐雄民, 李仲涛. 基于响应曲面中心组合设计的介质阻挡负载特征参数分析与优化[J]. 电气技术, 2024, 25(1): 17-22, 33. [12] 车瑞, 孙明. 基于有限元法的气体放电模拟综述[J]. 电气技术, 2022, 23(7): 18-25, 80. [13] 任明, 夏昌杰, 余家赫, 等. 绝缘子沿面放电多光谱脉冲演化特性及诊断方法[J]. 电工技术学报, 2023, 38(3): 806-817. [14] 陈轩, 王立宪, 朱超, 等. 基于振动信号的气体绝缘金属封闭输电线路局部放电诊断方法[J]. 电气技术, 2021, 22(12): 34-39. [15] 方舟, 张伟, 刘辉, 等. 基于图像形态学特征的GIS局部放电模式识别算法与监测系统[J]. 电气技术, 2024, 25(10): 48-54, 71. [16] 张翼, 朱永利. 基于深度-广度联合剪枝的电力设备局部放电轻量化诊断方法[J]. 电工技术学报, 2023, 38(7): 1935-1945, 1955. [17] 赵娜, 吴凯玥, 陈俊宇, 等. 大直径射流的放电特性及其等离子体参数和活性粒子分布的光谱诊断[J]. 光谱学与光谱分析, 2021, 41(8): 2644-2648. [18] 朱轶, 孙殿平, 杨晓华, 等. N2交流辉光放电等离子体喷束的光谱测量及特性研究[J]. 光谱学与光谱分析, 2007, 27(9): 1680-1684. [19] MILOSAVLJEVIC V, DONEGAN M, CULLEN P J, et al.Diagnostics of an O2-He RF atmospheric plasma discharge by spectral emission[J]. Journal of the Physical Society of Japan, 2014, 83(1): 014501. [20] JEON S U, KIM J W, LEE H Y, et al.Characteristics of merging plasma plumes for materials process using two atmospheric pressure plasma jets[J]. Materials, 2024, 17(19): 4928. [21] HERMANN T, CHANG E W K. Optical temperature measurement in unsteady plasma free jet[J]. Measurement Science and Technology, 2024, 35(5): 055204. [22] HSU C F, HO C Y, KUO Y L, et al.Plasma coloring of Ti via air atmospheric pressure plasma jet for dentistry[J]. Surface and Coatings Technology, 2024, 494: 131485. [23] SUZUKI S, TERANISHI K, ITOH H.Atmospheric pressure argon plasma jets I-measurements of spatial distribution for visible emission spectrum and vacuum ultraviolet[J]. Electrical Engineering in Japan, 2024, 217(1): e23457. [24] LU Xinpei, JIANG Zhonghe, XIONG Qing, et al.A single electrode room-temperature plasma jet device for biomedical applications[J]. Applied Physics Letters, 2008, 92(15): 151504. [25] CHEN Xiong, WANG Xingquan, ZHANG Binxiang, et al.Compared discharge characteristics and film modifications of atmospheric pressure plasma jets with two different electrode geometries[J]. Chinese Physics B, 2023, 32(11): 115201. [26] WANG Xingquan, WANG Fengpeng, ZENG Xianghua, et al.Decolorization of methyl violet in simulated wastewater by dielectric barrier discharge plasma[J]. Japanese Journal of Applied Physics, 2015, 54(5): 056201. [27] 王军毅, 施芸城. 大气压下Ar/CF4纳秒脉冲放电等离子体特性[J]. 东华大学学报(自然科学版), 2021, 47(2): 125-130. [28] LU X, NAIDIS G V, LAROUSSI M, et al.Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects[J]. Physics Reports, 2016, 630: 1-84. [29] 何永乐, 高俊, 左都罗, 等. 大气压He-Ar射频容性放电Ar亚稳态粒子数密度[J]. 强激光与粒子束, 2017, 29(5): 10-14. [30] 李政楷, 陈雷, 杨聪, 等. Ar/CH4等离子体射流发射光谱诊断研究[J]. 光谱学与光谱分析, 2021, 41(5): 1398-1403.